Density Adaptive Attention Mechanism: Robust & Explainable Representations Across Modalities

Why a new attention mechanism?

Scaled dot-product attention is the workhorse of Transformers, but it has three key issues on real-world, non-stationary data:

Low-entropy softmax: attention often collapses to a few positions.

Fixed context: limited adaptability to changing time scales and local/non-local patterns.

Weak explainability: weights encode correlations, not task-aligned feature importance.

DAAM: learns Gaussian means & variances to modulate features instead of dot products.

Multi-head: mixtures of Gaussians approximate arbitrary densities.

Parameter-efficient: 0.002-0.082M parameters per module.

Explainable: produces *Importance Factors* (IF) for each feature and layer.

Core idea: Density Adaptive Attention

For input tensor x (batch \times features), DAAM computes per-head Gaussian gates instead of pairwise dot products.

Per-head transformation:

Compute mean and variance along a chosen axis (e.g. time or channels).

Add learnable mean offset δ and scale variance with learnable ξ .

Normalize:
$$y_{\text{norm}} = \frac{x - (\mu + \delta)}{\sqrt{\sigma^2 + \varepsilon}}$$
.

Gaussian gate:
$$g = \exp\left(-\frac{y_{\text{norm}}^2}{2c^2}\right)$$
 with learnable c .

Modulate: $x' = x \odot g$.

DAAM replaces "where are things similar?" with "where is the density unusually informative?"

Algorithm sketch

Algorithm 1: Density Adaptive Attention

Input: x, normAxis, H heads **for** each head h = 1..H:

Compute μ_h, σ_h^2 along normAxis

 $\mu_h^{\text{adj}} = \mu_h + \delta_h \text{ (learnable)}$ $x - \mu_h^{\text{adj}}$

 $y_h = rac{x - \mu_h^{\mathrm{adj}}}{\sqrt{\sigma_h^2 + \varepsilon}}$ $g_h = \exp\left(-rac{y_h^2}{2c_h^2}
ight)$

 $x'_h = x \odot g_h$ return concat (x'_1, \dots, x'_H)

Universal approximation

Multi-head DAAM with K Gaussians per head approximates mixtures of Gaussians; with enough heads/components, it can approximate any continuous density. This lets the model match the true feature distribution of each modality instead of relying on fixed softmax shape.

Architecture & integration

Plug-in module for frozen encoders

Setup. We keep large pre-trained models *frozen* and add a light DAAM-based decoder:

Speech: WavLM-Large (24 layers, 1024-d).

Text: Llama2-13B (40 layers, 5120-d). **Vision**: BEiT-Large (24 layers, 1024-d).

Pipeline.

Mean-pool hidden states from each transformer layer.

Stack pooled vectors into $X \in \mathbb{R}^{N \times d}$.

Apply Multi-Head DAAM (or GQDAAM) across layer dimension.

Feed contextualized representation into a small conv / MLP head.



Fig. 1. Frozen encoder, DAAM-based attention module over layer-wise features, and task-specific head.

Parameter cost

For d-dimensional features and H heads:

$$P_{\mathsf{DAAM}} = 2 \times H \times d$$

versus

$$P_{\mathsf{SA}} \approx 4d^2$$

for standard self-attention projection matrices. In practice, DAAM adds 0.016%-0.08% parameters to GQA and uses $\sim\!80\%$ fewer parameters than LoRA.

Experimental results

Cross-modal, parameter-efficient gains

Modality	Dataset	Baseline	Best DAAM	Δ
Speech	IEMOCAP	62.3	67.4	+5.1
Vision	CIFAR-100	61.7	80.6	+18.9
Text	AG News	94.6	94.9	+0.3

Georgios Ioannides^{1,2}, Aman Chadha^{3,2}, Aaron Elkins⁴ ¹Carnegie Mellon University ²Amazon GenAI*

¹Carnegie Mellon University ²Amazon GenAI*

³Stanford University ⁴James Silberrad Brown Center for AI

*Work does not relate to position at Amazon.

Explainability via Importance Factors

DAAM yields **Importance Factors (IF)** from its Gaussian gates:

$$IF = \frac{\mathrm{DA} - \mathsf{min}(\mathrm{DA})}{\mathsf{max}(\mathrm{DA}) - \mathsf{min}(\mathrm{DA})} \in [0, 1]$$

where DA are the density-based attention values.

Importance Factor Heatmaps

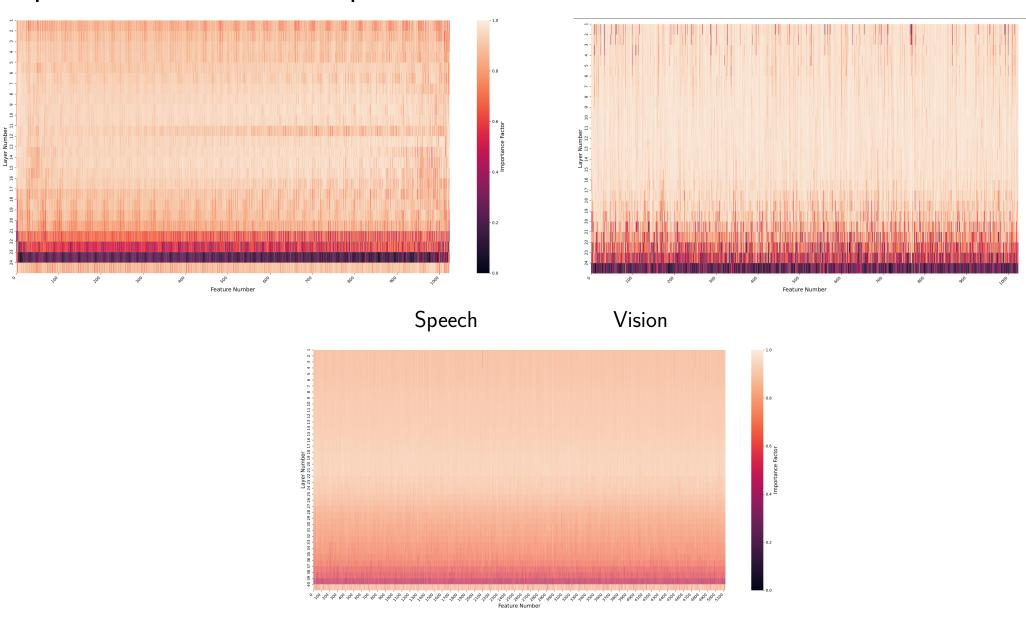


Fig. 3. Importance Factor maps: Speech & Vision emphasize early layers with useful representations; Text remains more uniformly distributed across depth.

Text

Validating IF: ablations

We retrain using only *high-IF* vs *low-IF* layers:

Dataset	Layers	Acc/F1	Δ
IEMOCAP	High-IF (L9)	64.0	+1.7
	Low-IF (L23)	62.3	
CIFAR-100	High-IF (L10-12)	72.6	+7.9
	Low-IF (L22-24)	64.7	
AG News	High-IF (L19-21)	94.9	+0.2
	Low-IF (L37-39)	94.7	

High-IF layers consistently outperform low-IF ones, confirming that IF measures *task-aligned* importance, unlike raw self-attention weights that mainly capture correlation.

Takeaways

DAAM provides **density-aware** attention that adapts to each modality. Gains are largest on **non-stationary** data (speech, vision).

IF gives a **usable interpretability signal** for pruning and analysis.

Integration with yields strong performance with **minimal** parameter cost.

Code & repo

GitHub: https://github.com/gioannides/DAAM-paper-code