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Abstract

Small Language Models (SLMs) offer compelling advantages in deployment cost
and latency, but their accuracy often lags behind larger models, particularly for
complex domain-specific tasks. While supervised fine-tuning can help bridge this
performance gap, it requires substantial manual effort in data preparation and iter-
ative optimization. We present PaDA-Agent (Pattern-guided Data Augmentation
Agent), an evaluation-driven approach that streamlines the data augmentation pro-
cess for SLMs through coordinated operations. Unlike state-of-the-art approaches
that focus on model training errors only and generating error-correcting samples,
PaDA-Agent discovers failure patterns from the validation data via evaluations
and drafts targeted data augmentation strategies aiming to directly reduce the gen-
eralization gap. Our experimental results demonstrate significant improvements
over state-of-the-art LLM-based data augmentation approaches for Llama 3.2 1B
Instruct model fine-tuning.

1 Introduction

Small Language Models (SLMs) [10, 13]1 are increasingly attractive for deployment due to their
lower cost and latency, but their limited capacity often results in poor generalization on domain-
specific tasks. This gap highlights a core evaluation challenge: how do we measure and systematically
improve generalization for models that appear well-trained yet fail to transfer beyond the training
distribution?

Supervised fine-tuning (SFT) and recent LLM-driven data augmentation methods [4, 6, 11] attempt
to address this by expanding training sets with generated examples. However, most approaches
emphasize training error correction and overlook the more informative validation failures, where
generalization gaps are revealed. Evaluating and exploiting these validation errors is thus critical for
understanding how SLMs fall short and for building augmentation strategies that directly target their
weaknesses.

In this work, we propose PaDA-Agent (Pattern-guided Data Augmentation Agent), a multi-agent
framework that connects evaluation with augmentation for fine-tuning based SLM improvements.
PaDA-Agent systematically analyzes validation failures to discover error patterns, drafts augmentation
strategies, and generates targeted synthetic data with automated quality control. By integrating
evaluation into the augmentation loop, our method directly addresses generalization errors rather than
treating them as incidental.

1typically with fewer than 7B parameters

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Evaluating the Evolving
LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling.
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Figure 1: The architecture of PaDA-Agent: The Central Orchestrator coordinates three specialized
agents: the Pattern Analysis Agent (for error analysis, pattern categorization, and augmentation
drafting), the Data Generation Agent (for pattern-guided and diverse synthetic data creation), and
the Quality Control Agent (for adherence, utility, and relevancy checks). This coordinated process
enables improved fine-tuning of SLMs with high-quality, targeted data augmentation.

Our experiments show that PaDA-Agent significantly outperforms state-of-the-art augmentation base-
lines when fine-tuning the Llama 3.2 1B Instruct model, yielding consistent gains across reasoning,
knowledge, and coding benchmarks. Beyond accuracy improvements, the framework produces inter-
pretable augmentation strategies that reveal why models fail – offering a bridge between evaluation
and actionable model improvement.

The primary contributions of this work include:

• A novel evaluation-guided approach to data augmentation that directly targets generalization
gaps by learning from validation errors, and a coordinated multi-agent framework for
systematic error analysis and data generation with automated quality control.

• Extensive experiments demonstrating consistent generalization improvements across
tasks, with an average 6.6-9.2% performance gain for Llama-3.2-1B-Instruct compared
to state-of-the-art data augmentation approaches.

2 Methodology

2.1 PaDA-Agent Architecture

As shown in Figure 1, PaDA-Agent iteratively augments training data with three agents coordinated
by a central orchestrator. The Pattern Analysis Agent extracts generalization failures from validation
and errors from training, drafting augmentation strategies. The Data Generation Agent produces
synthetic data accordingly, and the Quality Control Agent filters outputs by adherence, utility, and
relevancy. Accepted data are added to the training set, the model is re-fine-tuned, and the cycle
repeats. The orchestrator maintains a shared state over analyses, strategies, batches, and scores.

Let Dtrain, Dval, and Dsyn denote training, validation, and synthetic sets. For each (xi, yi) with
prediction ŷi, failures are

E = { ei = (xi, yi, ŷi) | (xi, yi) ∈ D, Fail(ŷi, yi, xi) }.

We target tasks with verifiable answers (e.g., multiple choice, math, code) and never expose validation
samples during training.
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Method ARC Challenge GSM8K HellaSwag SQuAD HumanEval Averaged

Standard (1000 train samples)

Vanilla Fine-Tuning 52.6 28.3 24.2 60.4
AugGPT 53.8 26.7 45.2 59.4 +20.4
LLMs-as-Instructors 49.2 27.5 47.4 63.2 +22.8
Ours 54.6 30.3 51.2 63.6 +32.0

Reduced (600 train samples)

Vanilla Fine-Tuning 50.5 26.3 21.6 59.6
AugGPT 51.2 24.3 32.4 60.8 +11.5
LLMs-as-Instructors 50.5 28.0 35.2 61.2 +18.0
Ours 50.5 30.5 40.8 60.4 +26.5

Limited (300 train samples)

Vanilla Fine-Tuning 47.3 23.4 24.6 60.6 9.4
AugGPT 45.7 18.7 27.6 59.6 18.8 -3.1
LLMs-as-Instructors 50.5 27.8 28.0 60.6 12.5 +9.9
Ours 50.8 28.4 32.6 63.2 12.5 +16.5

Table 1: Comparison of Llama 3.2 1B Instruct with vanilla fine-tuning, AugGPT, LLMs-as-Instructors,
and PaDA-Agent across datasets and data regimes. Numbers are test-set accuracy/EM (%); best per
setting in bold.

2.2 Pattern Analysis Agent

Each ej ∈Eval is analyzed into aj (root cause, scenario). Analyses are clustered,

{C1, . . . , CK} = Cluster({aj}), (1)

with K chosen by the elbow method. Each cluster yields a natural-language pattern patternk and
strategy strategyk that guides counterfactual generation.

2.3 Data Generation Agent

Pattern-guided samples are generated as

Dpat
syn =

K⋃
k=1

{Generate(xi, strategyk, feedbacki) | xi ∈ D̂k
train},

while error-based augmentation corrects training mistakes:

Derr
syn = {Generate(ei, feedbacki) | ei ∈ Êtrain}.

The final pool is Dsyn = Dpat
syn ∪ Derr

syn.

2.4 Quality Control and Efficiency

All synthetic batches are evaluated by the Quality Control agent on adherence, utility, and relevance,
each scored on a 1–10 scale. Batches falling below the threshold are regenerated with explicit feedback
until quality standards are met. To reduce cost, PaDA-Agent employs batching for generation and
evaluation, subsamples validation errors before clustering, and performs pattern analysis at the cluster
level, requiring only K calls. Further details on prompts and regeneration heuristics are provided in
Appendix A.

3 Experimental Results

3.1 Datasets

We evaluate across diverse tasks: (1) factual QA with SQuAD v1.1 [8], (2) commonsense/scientific
reasoning with ARC Challenge [2] and HellaSwag [12], (3) math reasoning with GSM8K [3], and
(4) coding with HumanEval [1]. Metrics are EM for SQuAD, accuracy for ARC/HellaSwag/GSM8K,
and pass@1 for HumanEval.

3



Method HellaSwag ARC Challenge
Full Model (Ours) 39.0 52.6
Ablation Studies:
w/o Generalization Patterns 35.2 (-3.8) 52.3 (-0.3)
w/o Train Errors 36.3 (-2.7) 50.8 (-1.8)
w/o Quality Control Agent 37.5 (-1.5) 52.3 (-0.3)

Table 2: Ablation studies showing the impact of removing different components from our full model.
Numbers in parentheses indicate performance drop from the full model.

To study low-resource settings, we subsample training data into 1000 (standard), 600 (reduced), and
300 (limited) samples. Each smaller split nests within the larger, ensuring consistency. Validation
and test sets (500 samples each, or task-specific) remain fixed across regimes. For HumanEval, we
report only the limited setting due to dataset size.

3.2 Experiment Setup

For pattern analysis, we subsample 50 validation errors, cluster them (2–10 clusters via elbow
method), and draft one strategy per cluster. Data generation produces synthetic samples equal to 50%
of training data, evenly distributed across clusters. Quality control uses a 7/10 threshold with up to
three regeneration attempts. All baselines are matched for synthetic data size and iterations.

We fine-tune Llama 3.2 1B Instruct [5] with LoRA (r = α = 32, dropout=0.05) for 5 epochs at
lr = 2e − 4 using Adam. Llama 3.3 70B Instruct powers pattern analysis and generation, while
Claude 3.5 Haiku v2 performs quality control to avoid self-enhancement bias. Temperature is 0 for
all but data generation (0.7). Training runs on a single NVIDIA A10G.

3.3 Results

Table 1 shows that PaDA-Agent consistently outperforms vanilla fine-tuning and SOTA baselines. In
the 1000-sample setting, it achieves the best results across all tasks, e.g., 51.2% on HellaSwag vs.
24.2% baseline, averaging +32.0%. With 600 samples, gains remain strong (+26.5%), particularly on
GSM8K (30.5%) and HellaSwag (40.8%). In the 300-sample regime, PaDA-Agent leads on four of
five tasks, with notable improvements on ARC (+3.5%) and GSM8K (+5.0%). Only HumanEval
favors AugGPT.

These results confirm the robustness of our multi-agent approach, especially in low-data regimes,
where validation-driven augmentation provides the largest benefit.

3.4 Ablation Studies

Table 2 shows that removing generalization pattern analysis causes the largest drop on HellaSwag
(-3.8%), confirming its importance for commonsense reasoning. Eliminating training error analysis
also degrades performance (-2.7% HellaSwag, -1.8% ARC), while removing quality control yields
a smaller decline (-1.5% HellaSwag) with minimal effect on ARC. These results highlight that both
error analysis and quality control contribute meaningfully, with pattern analysis being most critical
for generalization.

4 Conclusion and Future Work

We presented a novel multi-agent framework for efficient fine-tuning of SLMs, integrating specialized
agents for error pattern analysis, targeted data generation, and quality control. Our experiments
demonstrate consistent performance improvements across various tasks, with particularly strong
gains in low-data regimes. Our approach underscores the importance of targeted data augmentation
and the value of integrating error analysis, generation, and quality control in a cohesive system.
Future work should explore the scalability of this approach to larger datasets and models, and
investigate pattern transferability across tasks and domains.
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A Detailed metholodgy

A.1 PaDA-Agent Architecture

As illustrated in Figure 1, PaDA-Agent comprise multiple components: pattern analysis, data
generation, quality control, all of which coordinated by a central orchestrator. With an initially
fine-tuned SLM, pattern analysis agent discovers systematic generalization failures from validation set
(learn from generalization patterns), and sample-level mistakes from training set (learn from training
errors). It also produces targeted data generation strategies that are passed to the data generation
agent. Finally, the quality control Agent rigorously evaluates the generated synthetic data using
relevance, adherence, and utility checks, and incorporates data passing the checks into the augmented
training dataset. This process operates in an iterative cycle: in the new iteration, the augmented data
is used to fine-tune a new version of the SLM, and PaDA-Agent continues to augment data for the
new model. The detailed algorithm for implementing the architecture is shown in Appendix B.

Central Orchestrator. It manages the overall workflow and state transitions. It first initializes the
shared state object and then tracks critical information in the state throughout the workflow, including
error analysis results, synthetic data, quality assessments, and configuration parameters etc.

Next, we provide formal description of each component’s implementations in details. We denote
the original training set for fine-tuning the SLM Dtrain, the validation set Dval, and the generated
synthetic data Dsyn. PaDA-Agent requires sample-level evaluation results of these data. While the
evaluations can be conducted with LLM-as-a-judge for open-ended tasks, we focus on tasks with
verifiable answers such as math reasoning and multi-choice question-answering. For each example
(xi, yi), the model produces a prediction ŷi. We collect all instances where the model fails on that
input as compared to the ground truth:

E = {ei = (xi, yi, ŷi) | (xi, yi) ∈ D,
Fail(ŷi, yi, xi)}

where Fail denotes task-specific failure criterion (e.g. mismatch to ground-truth answer, generated
code failing to pass test cases).

A.2 Pattern Analysis Agent

The pattern analysis agent serves as the analytical foundation of PaDA-Agent by extracting actionable
insights that drive targeted data augmentation.

A.2.1 Learn from Generalization Patterns

We propose this pattern-guided augmentation approach based on failure modes made by the model
on the validation data. Here, generalization patterns refer to systematic error categories that emerge
when the model fails on validation data - for example, consistently mishandling multi-step math-
ematical reasoning, or struggling with specific types of scientific concepts. These patterns, derived by
clustering similar validation errors, represent broader model weaknesses rather than isolated mistakes.
Note that we derive augmentation strategies from validation error patterns while never exposing
the validation samples themselves to the fine-tuning process. This design maintains strict separation
between training and validation while leveraging validation insights to guide data generation.

Uncovering the failure modes and design the corresponding augmentation approach is a non-trivial
task. We design a sequence of subagents including sample-level error analysis, pattern categorization,
and augmentation strategy drafting.

Sample-Level Error Analysis Subagent. For each error ej ∈ Eval, the subagent LLM inspects key
features including the user query, model response, ground-truth response, and the evaluation result.
It is tasked to determine the potential root cause and the type of scenario where the error occurs
(e.g., complex math calculation for math reasoning, historical event recall for knowledge-based
question-answering), denoted as aj ∈ Aval. The prompt template is shown in Appendix 2.

Pattern Categorization Subagent. The pattern categorization subagent synthesizes the sample-level
analysis into coherent error patterns in the form of natural language descriptions representing
systematic model weaknesses. Considering that the error causes could be heterogeneous, we utilize a
clustering-based approach to first group the errors. Each error analysis aj is embedded into a feature
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vector containing the semantic information. We then apply a clustering algorithm of the features
to obtain a grouping of the error analysis into K clusters:

{C1, . . . , CK} = Cluster({aj | aj ∈ Aval}). (2)

We use sentence transformer with all-mpnet-base-v2 embeddings [9] for the errors, and k-means
clustering with elbow method [7] that dynamically determines the optimal number of clusters K.
Pattern categorization subagent LLM is then applied to each cluster and generate a natural language
description patternk that succinctly summarizes the common characteristics of the errors in that
cluster. The prompt template is shown in Appendix 3.

Strategy Drafting Subagent. Even with the identified error patterns, it could still remain unclear
how to address them with data augmentation. This subagent targets this gap by translating identified
error patterns into specific strategies for synthetic data generation. For each identified pattern
patternk, it develops a corresponding generation strategy strategyk designed to address the weakness.
We provide this agent’s prompt instruction in Appendix 4. A strategy serves as guidance for creating
counterfactual examples that demonstrate correct model behavior in similar contexts, thus helping
the model learn appropriate responses. Note that each strategy targets a dataset-level error pattern,
and is thus readily applicable for data augmentation based on the training set.

A.2.2 Learn from Training Errors

Motivated by existing work that focuses on targeted augmentation of model errors [11], we integrate
this branch designed to collect incorrect responses of the SLM on the training set Etrain, and feed them
into the subsequent augmentation agent. The errors made by the model provide valuable learning
opportunities for the model to correct itself during the next round of fine-tuning process.

A.3 Data Generation Agent

This agent receives signals from pattern analysis agent for data generation. To enable learn from
generalization patterns, the LLM is tasked to generate samples based on the previously drafted
augmentation strategy. Specifically, we randomly sample a training example xi ∈ Dtrain and generate
variants with each augmentation strategy strategyk:

Dpat
syn =

K⋃
k=1

{
Generate(xi, strategyk, feedbacki)

∣∣
xi ∈ D̂k

train

}
where Generate() denotes the LLM generation, feedbacki denotes the quality improvement feedback
provided by the quality control agent (details defined in next section), D̂k

train denotes the subsampled
training set for strategy k. The specific prompt instruction is shown in Appendix 5.

To enable learn from training errors, the LLM is tasked to generate samples to reinforce the correct
learning:

Derr
syn = {Generate(ei, feedbacki) | ei ∈ Êtrain},

where Êtrain denotes subsampled training set for synthetic data generation. The final synthetic dataset
is:

Dsyn = Derr
syn ∪ Dpat

syn. (3)

A.4 Quality Control Agent

This agent assesses the generated synthetic data Dsyn in batches and provides a quality score with
improvement feedback. It assesses the following quality dimensions:

• Adherence to augmentation strategy: How well the example follows the specific data
augmentation strategy provided. This only applies to the learn from generalization patterns
branch.

• Training utility: The potential utility of each example for model training.
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• Relevance to original training sample: Verify whether the synthetic data adheres to the format
and style of original training sample. This dimension aims to avoid potential hallucinations.

Each dimension is rated on a 1-10 scale, with specific criteria defining each rating level (detailed
instructions given in Appendix 7). Per-dimensional scores are averaged into an overall quality score,
and compared against a pre-defined threshold. Batches with low scores are returned to the data
generation agent for rework (up to a max number of regenerations), together with explicit feedback
to guide improvements.

A.5 Operational Efficiency

To improve operation efficiency, we utilize the following approaches: First, we conduct inference-
heavy steps in batches. For example, in data generation and quality control agents, the LLM is
tasked to generate or evaluate B samples in a single invocation, where B is the batch size. Second,
to reduce the inferences required for learn from generalization patterns branch, we subsample the
validation errors before conducting error analysis and pattern categorization. Note that both pattern
categorization subagent and strategy drafting subagent operate on the cluster level and each requires
only K LLM invocations.

B Algorithm

This section shows the algorithm of PaDA-Agent.

Algorithm 1 PaDA-Agent
Input Training set Dtrain, Validation set Dval, Initial SLMM
Output Fine-tuned SLM with improved generalization

1: Initial Fine-Tuning:
2: Fine-tune SLM on Dtrain
3: Iterative Improvement:
4: while not reached max iterations do
5: // Evaluations
6: Etrain ← Evaluate SLM on Dtrain
7: Eval ← Evaluate SLM on Dval
8: // Pattern Analysis Agent
9: aj ← ErrorAnalysis(ej)

10: {C1, . . . , CK} = Cluster({aj})
11: patternk ← PatternCategorization(Ck)
12: strategyk ← StrategyDrafting(patternk)
13: // Data Generation Agent
14: Dpat

syn ← Generate(Dtrain, {strategyk})
15: Derr

syn ← Generate(Etrain)
16: Dsyn ← Derr

syn ∪ D
pat
syn

17: while batch in Dsyn do
18: // Quality Control Agent
19: if QualityScore(batch) < threshold then
20: Regenerate batch with feedback
21: end if
22: end while
23: // Model Update Phase
24: Fine-tune SLM on Dtrain ∪ Dsyn
25: end while
26: return Final fine-tuned SLM

C Prompts
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u s e r _ p r o m p t = f " " "
Analyze t h e s e i n c o r r e c t r e s p o n s e s and i d e n t i f y t h e r o o t c a u s e and
e r r o r s c e n a r i o f o r each :

SAMPLE 1 :
USER QUERY: . . .
MODEL RESPONSE : . . .
GROUND TRUTH: . . .
−−−
SAMPLE 2 :
. . .
−−−

Format your r e s p o n s e as a JSON a r r a y o f a n a l y s i s r e s u l t s . For each
a n a l y s i s , i n c l u d e :

− " s a m p l e _ i d x " : < i n d e x of sample i n ba tch > ,
− " e r r o r _ c a u s e " : " A n a l y s i s o f what ’ s c a u s i n g t h e m i s t a k e " ,
− " s c e n a r i o _ c a t e g o r y " : " The t y p e o f s c e n a r i o where t h i s e r r o r
o c c u r s ( e . g . , ’ Complex Math C a l c u l a t i o n ’ , ’ H i s t o r i c a l Event R e c a l l
’ , e t c . ) "
" " "

Figure 2: Prompt for Sample-Level Error Analysis Subagent.

u s e r _ p r o m p t = f " " "
P l e a s e a n a l y z e t h e s e sample s t h a t have been grouped t o g e t h e r based

on t h e i r s i m i l a r i t y .
I d e n t i f y t h e c o r e e r r o r p a t t e r n t h a t d e f i n e s t h i s group of sample s
.
Focus on t h e common c h a r a c t e r i s t i c s and c h a l l e n g e s s h a r e d by t h e s e

sample s .

ANALYZED SAMPLES IN THIS GROUP:
. . .

C r e a t e a c o n c i s e c a t e g o r i z a t i o n t h a t :
1 . I d e n t i f i e s t h e c o r e p a t t e r n s h a r e d by t h e s e sample s
2 . D e s c r i b e s t h e s p e c i f i c c h a l l e n g e s i n t h i s group

Format your r e s p o n s e as a JSON o b j e c t w i th :
− " ca t egory_name " : " D e s c r i p t i v e name f o r t h i s e r r o r c a t e g o r y " ,
− " e r r o r _ p a t t e r n " : " Core p a t t e r n t h a t d e f i n e s t h i s c a t e g o r y o f
e r r o r s " ,
− " r e p r e s e n t a t i v e _ s a m p l e s " : [ " 1−2 most i l l u s t r a t i v e sample s with
t h e i r f u l l c o n t e n t " ]
" " "

Figure 3: Prompt for Pattern Categorization Subagent.

D Qualitative Analysis of Generated Patterns: Case Study on ARC-Challenge

Our qualitative analysis of the ARC-Challenge dataset reveals systematic patterns in model errors and
their evolution through iterative fine-tuning. Figure 8 illustrates the progression of error categories
across iterations, demonstrating both the effectiveness of our approach and persistent challenges
in specific areas.
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u s e r _ p r o m p t = f " " "
Based on t h e s e e r r o r p a t t e r n c a t e g o r i e s , g e n e r a t e s p e c i f i c
s t r a t e g i e s f o r s y n t h e t i c d a t a g e n e r a t i o n .
The o b j e c t i v e i s t o c r e a t e d a t a g e n e r a t i o n s t r a t e g i e s t h a t w i l l
b e n e f i t model f i n e − t u n i n g .
NOTE t h e s t r a t e g i e s and s u g g e s t i o n s must be a c t i o n a b l e f o r a n o t h e r

l a r g e l a n g u a g e model f o r s y n t h e t i c d a t a g e n e r a t i o n .
C r e a t e one f o c u s e d s t r a t e g y p e r e r r o r c a t e g o r y t h a t w i l l h e l p t h e
model improve on s i m i l a r c a s e s . Make s u r e t h e s t r a t e g i e s a r e
d i v e r s e and s i g n i f i c a n t l y d i f f e r e n t .

ERROR CATEGORIES :
. . .

For each c a t e g o r y , c r e a t e a d a t a a u g m e n t a t i o n / s y n t h e s i s s t r a t e g y
t h a t :
1 . D i r e c t l y a d d r e s s e s t h e i d e n t i f i e d c h a l l e n g e s
2 . P r o v i d e s s p e c i f i c g u i d a n c e f o r d a t a g e n e r a t i o n

Format your r e s p o n s e as a JSON a r r a y o f s u g g e s t e d s t r a t e g i e s . For
each s t r a t e g y , i n c l u d e :
− " ca t egory_name " : "Name of t h e e r r o r c a t e g o r y t h i s s t r a t e g y
a d d r e s s e s " ,
− " s t r a t e g y _ n a m e " : " D e s c r i p t i v e name f o r t h i s s t r a t e g y " ,
− " g e n e r a t i o n _ a p p r o a c h " : " D e t a i l e d a p p r o a c h f o r g e n e r a t i n g
s y n t h e t i c d a t a " ,
− " k e y _ e l e m e n t s " : [ " S p e c i f i c e l e m e n t s t o i n c l u d e in g e n e r a t e d d a t a
" ] .
" " "

Figure 4: Prompt for Strategy Drafting Subagent.

Table 3 provides representative examples of how error patterns evolved from initial to final iterations.
Our analysis of all error patterns reveals several insights:
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u s e r _ p r o m p t = f " " "
P l e a s e g e n e r a t e s y n t h e t i c d a t a sample s based on t h e f o l l o w i n g
improvement s t r a t e g y and examples .

IMPROVEMENT STRATEGY:
. . .

ORIGINAL EXAMPLES TO BASE GENERATION ON:
. . .

QUALITY CONTROL FEEDBACK FROM PREVIOUS ATTEMPT:
. . .

Use t h i s f e e d b a c k t o improve t h e q u a l i t y o f g e n e r a t e d sample s by
a d d r e s s i n g :
1 . Areas where p r e v i o u s samples f e l l s h o r t
2 . S p e c i f i c improvements s u g g e s t e d i n t h e f e e d b a c k
3 . Q u a l i t y a s p e c t s t h a t need enhancement

For each o r i g i n a l example , g e n e r a t e { num_samples_per_example }
s y n t h e t i c samples t h a t :
1 . IMPORTANT: t h e s y n t h e t i c sample w i l l improve f i n e − t u n i n g of a
downstream l a r g e l a n g u a g e model
2 . Fol low t h e s t r a t e g y ’ s g e n e r a t i o n _ a p p r o a c h
3 . I n c l u d e a l l k e y _ e l e m e n t s from t h e s t r a t e g y
4 . Use t h e example ’ s s t r u c t u r e b u t va ry t h e c o n t e n t such t h a t i t
d i f f e r s s i g n i f i c a n t l y t o e n s u r e d i v e r s i t y
5 . M a i n t a i n c o n s i s t e n c y wi th t h e s t r a t e g y ’ s g o a l s
6 . Address any q u a l i t y c o n t r o l f e e d b a c k i f p r o v i d e d

Each s y n t h e t i c sample s h o u l d f o l l o w t h e e x a c t same f o r m a t a s t h e
example d a t a .

Format your r e s p o n s e as a JSON a r r a y o f s y n t h e t i c sample s . For
each s y n t h e t i c sample , i n c l u d e :
− " s a m p l e _ i d " : A un iq ue i d e n t i f i e r ( e . g . , " s y n t h e t i c _ [
random_number ] " )
− " i s _ s y n t h e t i c " : t r u e
− " b a s e d _ o n _ s t r a t e g y " : " { s t r a t e g y . g e t ( ’ s t r a t e g y _ n a m e ’ , ’ unknown ’ ) }
"
− " based_on_example " : The s a m p l e _ i d o f t h e o r i g i n a l example
− " messages " : Array wi th u s e r and a s s i s t a n t messages
" " "

Figure 5: Prompt for Data Generation Agent - Learn from Generalization Patterns.
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u s e r _ p r o m p t = f " " "
P l e a s e g e n e r a t e s y n t h e t i c d a t a sample s based on t h e s e t r a i n i n g
e r r o r examples .

EXAMPLE 1 :
QUESTION /TASK:
. . .

STUDENT ’S WRONG ANSWER:
. . .
−−−
EXAMPLE 2 :
. . .
−−−

QUALITY CONTROL FEEDBACK FROM PREVIOUS ATTEMPT:
. . .

Use t h i s f e e d b a c k t o improve t h e q u a l i t y o f g e n e r a t e d sample s by
a d d r e s s i n g :
1 . Areas where p r e v i o u s samples f e l l s h o r t
2 . S p e c i f i c improvements s u g g e s t e d i n t h e f e e d b a c k
3 . Q u a l i t y a s p e c t s t h a t need enhancement

P l e a s e g e n e r a t e { t o t a l _ s a m p l e s } new samples wi th c o r r e c t answer s
t h a t h e l p t h e s t u d e n t ’ s l e a r n i n g .
Each s y n t h e t i c sample s h o u l d f o l l o w t h e e x a c t same f o r m a t a s t h e
o r i g i n a l examples b u t come wi th t h e c o r r e c t r e s p o n s e .

Format your r e s p o n s e as a JSON a r r a y o f s y n t h e t i c sample s . For
each s y n t h e t i c sample , i n c l u d e :
− " s a m p l e _ i d " : A un iq ue i d e n t i f i e r
− " i s _ s y n t h e t i c " : t r u e
− " messages " : Array wi th u s e r and a s s i s t a n t messages wi th e x a c t l y
one − t u r n o f c o n v e r s a t i o n , i . e .
{{ " messages " : [ { { " r o l e " : " u s e r " , " c o n t e n t " : <new q u e s t i o n >}} ,{{ " r o l e " :
" a s s i s t a n t " , " c o n t e n t " : < c o r r e c t r e s p o n s e > } } ]} } , where <new q u e s t i o n
> and < c o r r e c t r e s p o n s e > a r e p l a i n s t r i n g s w i t h o u t any o t h e r
s t r u c t u r e .
" " "

Figure 6: Prompt for Data Generation Agent - Learn from Training Errors.
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u s e r _ p r o m p t = f " " "
P l e a s e e v a l u a t e t h e q u a l i t y o f s y n t h e t i c d a t a sample s by compar ing

them wi th t h e i r o r i g i n a l c o u n t e r p a r t s .

IMPROVEMENT STRATEGIES :
. . .

ORIGINAL−SYNTHETIC PAIRS :
. . .

For each o r i g i n a l − s y n t h e t i c p a i r , e v a l u a t e and p r o v i d e s p e c i f i c
f e e d b a c k on :
1 . How w e l l t h e s y n t h e t i c sample m a i n t a i n s t h e e s s e n t i a l
c h a r a c t e r i s t i c s o f t h e o r i g i n a l
2 . How e f f e c t i v e l y i t imp lemen t s t h e improvement s t r a t e g i e s
3 . Q u a l i t y and u s e f u l n e s s f o r t r a i n i n g
4 . S p e c i f i c a r e a s t h a t need improvement
5 . What a s p e c t s a r e working w e l l and s h o u l d be m a i n t a i n e d

Rate each s y n t h e t i c sample on a s c a l e o f 1 −10 , where :
− 1 −3: Poor q u a l i t y , needs major improvements
− 4 −6: Modera te q u a l i t y , needs s p e c i f i c enhancement s
− 7 −10: High q u a l i t y , minor o r no improvements needed

Format your r e s p o n s e as a JSON a r r a y o f e v a l u a t i o n s . Each
e v a l u a t i o n o b j e c t s h o u l d have :
− s a m p l e _ i d : t h e ID of t h e sample
− t y p e : " o r i g i n a l " o r " s y n t h e t i c "
− q u a l i t y _ r a t i n g : numer ic r a t i n g from 1−10 ( f o r s y n t h e t i c sample s
on ly )
− f e e d b a c k : c o n c i s e f e e d b a c k on t h e sample
" " "

Figure 7: Prompt for Quality Control Agent.

Figure 8: Evolution of error patterns across iterations. The decreasing height of stacked bars indicates
overall error reduction followed by increase in test accuracy.
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Category Name Error Patterns at Iteration 1 Generation Strategy Error Patterns at Iteration 3

Science Knowledge
Recall Errors

Lack of understanding or inaccurate
recall of scientific concepts and princi-
ples across various domains, including
biology, chemistry, physics, and envi-
ronmental science

Generate multiple-choice questions that target
specific scientific concepts and principles, with
a focus on biology, chemistry, physics, and
environmental science. Use a mix of easy,
medium, and hard questions to challenge the
model’s recall abilities.

Biological and Eco-
logical Misconcep-
tions

Inadequate understanding of biologi-
cal and ecological concepts, including
evolutionary factors, species relation-
ships, and environmental interactions,
leading to incorrect conclusions and
answers

Create scenarios that test the model’s under-
standing of evolutionary factors, species rela-
tionships, and environmental interactions. Use
a combination of descriptive text, multiple-
choice questions, and case studies to evaluate
the model’s ability to apply biological and eco-
logical concepts correctly.

Insufficient or inaccurate knowledge of
scientific concepts, principles, and pro-
cesses, particularly in the domains of envi-
ronmental science, biology, ecology, and
conservation, leading to incorrect answers
in multiple-choice questions

Scientific Concept
Misapplication

Misunderstanding or misapplication
of scientific concepts, principles, or
processes, leading to incorrect conclu-
sions or answers

Create scenarios that require the application of
scientific concepts and principles to real-world
situations. Use a combination of descriptive
text and multiple-choice questions to test the
model’s ability to apply scientific knowledge
correctly.

The core pattern shared by these samples
is the misapplication or misunderstand-
ing of fundamental scientific concepts, in-
cluding physics, thermodynamics, and sci-
entific methodology, leading to incorrect
conclusions or answers.

Science and Physics
Concept Misapplica-
tion

Failure to apply fundamental princi-
ples and concepts in science, physics,
and mathematics, resulting in incorrect
conclusions and answers

Generate simulated experiments that test the
model’s understanding of scientific and physics
concepts. Use a combination of experimental
design, data analysis, and conclusion drawing
to evaluate the model’s ability to apply scien-
tific principles correctly.

Inability to apply fundamental concepts
and principles in various scientific do-
mains, including biology, chemistry, en-
vironmental science, and astronomy, re-
sulting in incorrect answers to multiple-
choice questions.

Table 3: Example error patterns and generation strategies generated by pattern analysis agent for
ARC Challenge dataset.
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