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Abstract

Understanding and inferring causal relation-
ships from texts is a core aspect of human
cognition and is essential for advancing large
language models (LLMs) towards artificial gen-
eral intelligence. Existing work primarily fo-
cuses on synthetically generated texts which
involve simple causal relationships explicitly
mentioned in the text. This fails to reflect the
complexities of real-world tasks. In this paper,
we investigate whether LLMs are capable of
inferring causal relationships from real-world
texts. We develop a benchmark drawn from
real-world academic literature which includes
diverse texts with respect to length, complexity
of relationships (different levels of explicitness,
number of events, and causal relationships),
and domains and sub-domains. To the best
of our knowledge, our benchmark is the first-
ever real-world dataset for this task. Our ex-
periments on state-of-the-art LLMs evaluated
on our proposed benchmark demonstrate sig-
nificant challenges, with the best-performing
model achieving an average F1 score of only
0.477. Analysis reveals common pitfalls: dif-
ficulty with implicitly stated information, in
distinguishing relevant causal factors from sur-
rounding contextual details, and with connect-
ing causally relevant information spread across
lengthy textual passages. By systematically
characterizing these deficiencies, our bench-
mark offers targeted insights for further re-
search into advancing LLM causal reasoning.

1 Introduction

The ability to identify and understand causal rela-
tionships embedded within texts is a fundamental
aspect of human cognition (Pearl, 2009; Harari,
2014) and is crucial for complex decision-making.
Humans excel at inferring these relationships when
given a text, even when they are not explicitly
stated; for instance, from “Raising prices might
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Implicit

Businesses often find pricing
challenging. Raising prices

might boost revenue per item
initially . . . Changes in prices

risk alienating customers,
thereby decreasing earnings and

hurting profitability.

Explicit

Raising prices causes an
increase of revenue per sale but
decreases the number of buyers.
Fewer buyers causes a decrease

in revenue.

Price

Number
of Buyers Revenue

Figure 1: An example causal graph illustrating funda-
mental economic relationships, showcasing how Price
affects Number of Buyers, which in turn influences Rev-
enue. The text example shows two example texts for the
same graph, which highlights a challenge in construct-
ing causal relationship purely from text and underscores
the need to detect both explicit and implicit cues for
accurate causal graph generation.

boost revenue per item initially... Changes in prices
risk alienating customers” humans can infer that
raising the “Price” causally influences the “num-
ber of customers”. Large language models (LLMs)
have shown remarkable progress, fueling aspira-
tions towards artificial general intelligence (AGI).
Given the importance of causality to intelligence,
significant research has focused on assessing the
causal reasoning capabilities of LLMs. Much of
this work evaluates LLMs’ stored causal knowl-
edge about events (Zhou et al., 2024) rather than
their ability to infer relationships from textual con-
texts. While some studies examine extracting
causal relationships from text (Veldhuis et al., 2024;
Hosseinichimeh et al., 2024; Oh, 2025; Jin et al.,
2024; Joshi et al., 2024a; Lasheras and Pinheiro,
2025), they often use synthetically generated or
simplified texts with explicitly stated causal links.
This approach, however, falls short of real-world
scenarios where causal relationships are often em-
bedded in long, complex texts, with varying de-
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grees of explicitness, interconnected causal rela-
tionships, and diverse domains. Figure 1 illustrates
a toy example demonstrating this contrast: it shows
that while a synthetic text may present a clear, ex-
plicit statement like “Raising prices causes a de-
crease in revenue,” real-world texts often convey
this far more implicitly, requiring moving beyond
mere comprehension to extract the causal structure.

To address this gap, we introduce ReCAST
(Realistic Causal Structure from Text), a novel
benchmark drawn from real-world academic lit-
erature. ReCAST features diverse texts varying in
length, complexity of relationships (including dif-
ferent levels of explicitness, number of events, and
causal relationships), and spanning multiple do-
mains and sub-domains, mirroring the challenges
of real-world causal reasoning from text. Our
experiments on state-of-the-art LLMs using Re-
CAST demonstrate significant struggles, with the
best models achieving an average F1 score of only
0.477. Our results reveal common pitfalls: dif-
ficulty with implicitly stated information, distin-
guishing relevant causal factors from contextual
details, and connecting causally relevant informa-
tion spread across lengthy texts. By systematically
characterizing these deficiencies, our benchmark
offers targeted insights for further research into
advancing LLM causal reasoning.

Our main contributions are as follows:

• We propose, to the best of our knowledge,
the first benchmark to evaluate the real-world
causal reasoning abilities of LLMs from text.

• ReCAST offers benchmarking with varying
text and graph sizes from real-world literature,
with extensive filtering and post-processing to
ensure quality. We further create a LLM-as-a-
Judge for automated, fine-grained evaluation.

• Shows the limitations of LLMs at realistic
causal reasoning from text across varied sam-
ples, including domains, text length, graph
size, and degree of confounding.

2 Related Work

Causal Reasoning with LLMs. As LLMs have
grown in capabilities, significant research has ex-
plored their causal reasoning abilities. Existing
benchmarks often assess these capabilities through
various lenses. Some focus on identifying causal
structures from pre-defined variable lists or datasets
(as surveyed in (Kıcıman et al., 2024) or parts of

CausalBench (Zhou et al., 2024)), largely bypass-
ing complex textual inference. Other benchmarks
utilize textual inputs, but frequently rely on syn-
thetic or simplified narratives with explicit, often
pairwise, relationships or for constructing relatively
small graphs (e.g., CLadder (Jin et al., 2024), Ex-
pliCa (Miliani et al., 2025), From text to map (Hos-
seinichimeh et al., 2024)). Other prior work evalu-
ates causal understanding via question-answering,
probing LLMs’ stored knowledge and their ability
to deduce specific causal claims from short prompts
or contexts (e.g., CaLQuest.PT (Lasheras and Pin-
heiro, 2025), COLD (Joshi et al., 2024a)). While
some studies engage with real-world texts, they
target more constrained tasks such as identifying
a single primary causal link (Oh, 2025) or classi-
fying individual sentences for causality (Veldhuis
et al., 2024), rather than requiring the synthesis of a
complete causal graph. These approaches, detailed
further in Appendix A, generally do not address
the challenge of causal graph construction under
the full diversity and complexities of real-world
conditions, where causality is often implicit and
embedded within long narratives. ReCAST differs
from prior work by directly targeting this gap, us-
ing academic literature as verified source data for
causal reasoning from text under realistic condi-
tions.

Knowledge Graph Discovery with LLMs Re-
cent years have witnessed substantial progress in
knowledge graph construction frameworks with
LLM-based approaches (Bratanic, 2024; Zhang
and Soh, 2024; Yu et al., 2023). These methods
convert unstructured text into structured formats by
identifying entities, relationships, and additional
attributes. However, they emphasize open-domain
and factual information, differing from the unique
challenges of causal reasoning.

3 The ReCAST Dataset

In order to ensure that ReCAST is a realistic causal
reasoning benchmark, we need benchmark samples
that have a source text, a ground-truth causal graph,
and meet our realism criteria. The construction of
the benchmark is achieved via a 3-step pipeline: (i)
Paper collection and filtering, (ii) Annotation, (iii)
Post-processing. Next, we elaborate on each step.

3.1 Paper Collection and Filtering

We focus ReCAST on the economics domain due
to the unique characteristics of some of its causal



literature, which is especially well-suited for this
benchmark. These papers are ideal for a text-
based causal benchmark, as they contain detailed
textual descriptions of their goals, methodology,
background, and causal reasoning, while avoiding
reliance on non-textual elements (e.g., numerical
data). Because each paper centers around a sin-
gle, human-authored causal graph, adheres to a
standardized structure, and articulates modeling
assumptions, causal graphs can be accurately an-
notated, and construction from the text is feasi-
ble, even when elements are not mentioned ex-
plicitly. At the same time, economics is highly
cross-disciplinary, spanning many domains, which
offers substantial diversity while allowing for stan-
dardized quality control. Statistics detailing the
distribution of academic domains within ReCAST
are presented in Appendix B.

To support large-scale collection, we utilize API
access to economics papers. To ensure our cor-
pus allows for legal redistribution of texts and dia-
grams, we restrict our search to the open access
repositories (MDPI and PLOS). We use a key-
word search for the term “causal loop diagram”,
a commonly used term in economics literature to
describe causal graphs, resulting in 646 candidate
papers. We exclude workshop papers by remov-
ing papers whose abstracts include the keywords
“workshop” or “group model build”, as these texts
do not include sufficient details about the graph
to make it identifiable. We then manually exclude
all papers with graphs unsuitable for annotation,
including ones with no or multiple unrelated causal
graphs, purely illustrative or non-causal diagrams,
and causal graphs with poor legibility or ambigu-
ous graph elements. We retain only papers where
there is a single causal graph - either as the sole
causal graph, or as the culmination of a sequence
of graphs - so that it can serve as the ground-truth
causal graph for benchmarking. During the manual
filtering, the location of each primary causal graph
in the paper is labeled to ensure accurate annotation
(e.g., “Top diagram on page 7”).

3.2 Annotation
As ReCAST is a text-based benchmark, it is impor-
tant that ground-truth causal graphs are converted
from images to a text-based representation to be
used as the ground-truth answer. We find through
manual evaluation that vision-based LLMs are un-
suitable for annotation due to frequent hallucina-
tions. Therefore, we employ domain experts to

annotate each causal graph into a standardized for-
mat (“source_variable” -> “sink_variable”). They
are provided detailed instructions for the annota-
tion process, including which graph elements to
include, a standardized output format, and step-by-
step examples. To avoid potential errors, we further
instruct annotators to flag any papers that cannot
be unambiguously annotated given the instructions,
which we manually review for suitability.

3.3 Post-Processing
Graph Post-Processing To achieve ReCAST’s
goal of being a realistic causal reasoning bench-
mark, it is essential that the ground-truth answers
are accurate. While human annotators are highly
accurate at transcribing causal graphs to our stan-
dardized textual format, they are prone to minute
errors. To mitigate the risk of erroneous ground-
truth answers, we utilize a rigorous post-processing
pipeline for ground-truth graphs. We first utilize
code-based approaches to identify formatting mis-
takes, and attempt string matching approaches to
automatically correct them. Any samples that are
unable to be corrected for formatting are flagged
and have the formatting manually corrected.

To verify transcription quality, a second
annotator re-labeled 37 randomly chosen diagrams
(778 edges, 616 nodes; ≈ 15% of ReCAST). We
observed 22 missing and 5 spurious edges, giving
edge–level precision = 0.995, recall = 0.977,
F1 = 0.986, and Cohen’s κ = 0.94. Variable
labels showed 8 auto-correctable typos (e.g.,
carbondioxide) and 4 minor prefix/suffix omis-
sions; no major name mismatches occurred. Full
per-graph statistics and the Python script used to
compute them are provided in Appendix J. We
explore the possibility of utilizing code-based
approaches for correction of variable naming, but
find that it is prone to erroneously combining
distinct variables (e.g., GDP and GNP). Therefore,
we utilize LLMs for automated correction, which
is detailed further in Appendix M.

Text Post-Processing With the causal graphs final-
ized, it is important to ensure that the suitability of
source texts. As ReCAST is a text-based bench-
mark, the PDF must first be converted to a textual
format. As markdown is a common format for
LLMs, we choose this as our target for conversion.
We use the Python library PyMuPDF to extract the
raw text for each paper. The output of this step con-
tains numerous formatting errors, such as arbitrary



line breaks. We utilize a multi-step LLM pipeline,
as code-based approaches are infeasible given the
diversity of documents, and manual testing shows
current LLMs cannot perform this process accu-
rately in one step.

We first prompt Mistral Small (Team, 2025a)
to convert from the PDF text to well-structured
markdown (see Appendix N). The goal of this
step is to remove non-textual elements (which are
impossible to accurately represent in markdown)
and entirely irrelevant elements (to streamline the
task and save on computational costs). Therefore,
Mistral is tasked to output the markdown auto-
regressively while skipping over non-textual ele-
ments (such as images, charts, or other figures),
in-line citations, references, publication informa-
tion, and appendices. The output of this step is a
well-formatted markdown version of the paper.

Normalization Tool

{ "normalizations": [
{"start": "text to find (start)",
"end": "text to find (end)",
"replacement": "new text"}, ... ] }

However, this may include information that
makes the task trivial (such as a table including
all of the sample’s causal relations), or it may er-
roneously reference removed elements (resulting
in an internally inconsistent document). To correct
these issues, we utilize o3-mini (OpenAI, 2025) to
remove explicit references to the causal graph and
correct any references to missing elements using a
normalization tool. Explicit references to the graph
are unrealistic (such as a table listing every connec-
tion in the graph), as the task is to create a causal
graph that does not already exist. However, we
are careful to not remove other information about
the graph to avoid making it unidentifiable. To
make these changes, we provide the model a nor-
malization tool to minimize output tokens, and un-
necessary changes, while allowing for code-based
validation.

4 Experiments

We examine the following aspects of LLM perfor-
mance on our benchmark: (i) ReCAST’s ability
to reveal LLM limitations across strong open- and
closed-source models, including both instruction-
tuned and reasoning-optimized variants, at varied
realistic causal reasoning tasks; (ii) Ablation anal-
ysis to isolate sources of error, focusing on fac-

Attributes Number
Number of Samples 292
Average Nodes per Graph 24.99
Average Edges per Graph 37.37
Average Length of Text 40541.15
Average Degree of Confounding per Node 0.123

Table 1: ReCAST statistics. The average length of
ReCAST is measured in characters for consistency.

tors including the role of unobserved confounders,
and varying sizes; and (iii) Performance of LLMs
under name-assisted causal graph construction,
where node identification is controlled for, isolating
causal inference capabilities from entity extraction
accuracy.

In the following subsections, we first describe
our experimental setup, including models, metrics,
and formatting pipelines, and then present results
under both the standard and ablation settings. Addi-
tional implementation details and extended analysis
can be found in the Appendix1.

4.1 Evaluation Details

To verify ReCAST’s effectiveness, we first select
state-of-the-art LLMs of varying model sizes and
types for evaluation. Specifically, as we are inter-
ested in examining the performance of LLMs for
real-world causal reasoning, we aim for diverse
models to evaluate. To evaluate each open-source
LLMs, we employ its official prompt format for
each test sample. During generation, we use the
hyperparameters recommended by its creator to
ensure we utilize a strong baseline. We also set
the max tokens to 100,000 to ensure that mod-
els are not penalized for utilizing long chain-of-
thoughts. For closed source models, we retry on
failure, to ensure that all models generate valid an-
swers. Due to the nature of ReCAST, some samples
are extremely long, and in rare cases may exceed
a model’s maximum context window; we do not
include these failed answers to avoid artificially
depressing scores. We also provide the LLM the
number of expected nodes, as fixing V isolates the
causal graph’s abstraction from the causal reason-
ing objective. Without doing so, there are many
valid levels of granularity for the causal graph,
greatly complicating automating grading, and cre-
ating a confounder for the causal reasoning task.
Evaluated Models. We evaluate 5 recent LLMs,

1Our code can be found at
https://anonymous.4open.science/r/CausalBenchmark-
E0C6.



varying in size and training on our task, below:

Model Access Size Type

o3-mini OpenAI Closed — Reasoning
R1 et al. Open 685 Reasoning
Qwen-32B Team Open 32 Instruct
QwQ Team Open 32 Reasoning
Llama-8B Grattafiori et al. Open 8 Instruct

Table 2: Summary of Evaluated LLMs. Size in billions
of parameters.

4.2 Evaluation Metrics
Traditional Metrics. Evaluating causal graph
construction from text poses unique challenges
not addressed by standard metrics in causal dis-
covery. Traditional approaches assume structured
inputs and rely on exact variable and edge matches.
Common metrics like Structural Hamming Dis-
tance (SHD), precision, recall, and F1 require that
variable names are exact matches, which will rarely
hold for this task. For example, “person” and “hu-
man” are semantically nearly identical, but are not
exact matches as variable names. Therefore, binary
metrics are poorly suited for this task.

Given the automated evaluation aims to compare
a generated graph with a ground-truth graph, Graph
neural networks (GNNs) seem like a natural choice
for graph similarity evaluation. However, we find
that it is a poor choice for this task, due to a lack
of access to the source text, a lack of fine-grained
output, and lack of differentiation in performance
when the task is simplified. We provide further
analysis of GNN efficacy for this evaluation task,
including quantitative results, in Appendix E.

LLM-as-a-Judge Metrics. To address these limi-
tations, we introduce a LLM-as-a-Judge automated
evaluator. It provides fine-grained feedback using
the prompt and grading calculations as detailed in
Appendix T and Appendix U. The prompt for the
LLM judge ensures several properties are exhibited
during grading. There may be varying levels of ab-
straction in the graph; it is important that a model
is rewarded for including a relationship at all, and
using the proper level of abstraction is rewarded
increasingly as it gets closer to the ground-truth
graph. There are many choices when making a
graph that are merely stylistic; a model should not
be penalized for this, even if it was different from
the ground-truth (most commonly with variable
naming). We utilize varying labels to allow for
grading on the level of individual nodes and edges,

and aggregate these metrics across the entire graph.
We also aim to minimize overlap between cate-
gories, so that performance in one area does not
contaminate judging in another. Additionally, it is
important to use the proper level of criticism when
grading; missing a core relationship to a graph
or getting the causal logic wrong is a much more
severe issue than choosing different variables to
include on the periphery of the graph. This also
allows other factors like hallucinations, reversing
causality, and other factors to be appropriately in-
corporated into overall metrics while minimizing
ambiguities in grading. The LLM judge, R1, is pro-
vided with the source text and ground-truth graph,
and outputs a categorical assessment across several
criteria for each node and edge. These are aggre-
gated across all nodes and edges for each graph,
which can be used to calculate traditional binary
metrics, as detailed below.
Precision, Recall, F1: Measured on the directed
edges (u, v) in the predicted and reference graphs.

Structural Hamming Distance (SHD):
SHD(Gtrue, Gpred) = #Adds +#Dels +#Revs

Normalized SHD: Normalized SHD = SHD
n(n−1)

where n is the number of unique nodes. Met-
rics are computed using adjacency matrices with
CausalDiscoveryToolbox.

Formatting and Normalization. We enforce
strict JSON formatting for graph outputs to enable
automated evaluation. Since models may introduce
formatting errors, we apply a post-processing step
using Mistral Small (Team, 2025a) to convert mal-
formed outputs into valid JSON while preserving
the intended relationships. The correction prompt
is shown in Appendix Q.

5 Experimental Results

5.1 Main Results
Table 3 presents the accuracy of all selected LLMs
on the realistic causal graph generation from text
task. We provide a detailed metrics of performance,
including precision and recall, F1, SHD, and Nor-
malized SHD, with corresponding standard devia-
tions. We report for nodes and edges as applicable.

The first observation we have from Table 3 is that
all evaluated models show relatively poor perfor-
mance, with the best-performing model, R1, achiev-
ing just an average F1 of 0.477 across all samples,
falling far short of ideal performance. However,



Model Node Precision (↑) Node Recall (↑) Edge Precision (↑) Edge Recall (↑) F1 (↑) SHD (↓) Normalized SHD (↓)

QwQ 0.881± 0.119 0.488± 0.216 0.802± 0.201 0.242± 0.200 0.450± 0.193 36.860± 21.793 0.107± 0.084
Llama-8B 0.827± 0.191 0.359± 0.244 0.677± 0.265 0.125± 0.160 0.302± 0.201 41.197± 23.631 0.120± 0.102
Qwen-32B 0.862± 0.117 0.434± 0.242 0.747± 0.231 0.181± 0.170 0.381± 0.200 40.602± 23.886 0.112± 0.089
o3-mini 0.862± 0.134 0.459± 0.231 0.806± 0.197 0.208± 0.185 0.415± 0.200 38.481± 22.120 0.107± 0.090
R1 0.893± 0.108 0.522± 0.217 0.817± 0.183 0.260± 0.196 0.477± 0.187 38.193± 22.491 0.105± 0.097

Table 3: Comparison of different models’ performance on ReCAST (mean ± standard deviation). Best is underlined.

despite poor overall performance, models vary sub-
stantially. Llama-8B performs noticeably worse
than all other models across all metrics. Compar-
ing across metrics, models perform in roughly the
same ranking for each, showing broad agreement
for overall performance.

We note that the standard deviation is high across
all metrics. We attribute this variable performance
primarily to the realistic nature of the benchmark.
Sample difficulty will vary based on factors includ-
ing degree of confounding, number of nodes, num-
ber of edges, text size, and domains mimicking the
diverse conditions for real-world causal reasoning.
All models also exhibit significantly lower recall
than precision, showing that models have an easier
time generating nodes and edges that are correct,
but not necessarily the same as the ground-truth
graph. Raw SHD scores are high, as expected, due
to the large size of graphs. However, normalized
SHD is low, due to most graphs being sparse.

We also find that there is a relationship be-
tween model size and performance. The worst-
performing model, Llama-8B, is just 8 billion pa-
rameters, while the best performing model is R1,
with 685 billion. There is also a relationship be-
tween model performance and model type, as rea-
soning models consistently outperform instruction
models. For example, QwQ is a reasoning-trained
version of Qwen-32B with the same underlying
model architecture, and outperforms the instruct
model on every metric.

5.2 Evaluation under different Degrees of
Confounding

We investigate whether poor overall performance
is due to succeeding on easier samples while strug-
gling on harder samples. To do so, we analyze the
degree of confounding, which shows how much
information a source text contains about its graph.
To measure this, we use the following equation,
which is calculated as the percentage of nodes in a
graph that are not explicitly mentioned in a text.

DC =
1

|V |
∑
v∈V

{
1, if v /∈ E,

0, if v ∈ E

Degree of Confounding is an important attribute
of samples, as it is a natural measure of difficulty,
as nodes that are explicitly mentioned are easier to
identify than entirely unobserved confounders. We
use R1 to label the degree of confounding for each
node in each sample, providing it the ground-truth
graph and source text as a reference. Each node
is classified as explicit (the node or a synonym is
explicitly described in the text) or not (the node
appears implicitly or indirectly, or does not appear
in the text). We calculate degree of confounding
for each sample using the formula detailed above,
and average over all samples.

Figure 2: Heatmap of the average model scores across
confounding bins (lenient definition), showcasing how
degree of confounding has a large impact on model
performance. It underscores LLMs’ struggles to infer
causal relationships when explicit references are sparse.

Using this information, the samples are cate-
gorized into four categories, ensuring that each
has sufficient samples to show the effect of con-
founding. We explicitly do not split into evenly
sized regions, as samples with extremely high de-
grees of confounding are unrealistic, and hence
do not appear in ReCAST. As shown in Figure 2,
there is a strong trend between a sample’s degree of
confounding and model performance (reported us-
ing F1). For example, the lowest-confounding bin
(<10%) the best model (R1) achieves an average



Model Precision (↑) Recall (↑) F1 (↑) SHD (↓) Normalized SHD (↓)

R1 0.513 ± 0.202 0.512 ± 0.072 0.502 ± 0.146 40.558 ± 35.173 0.085 ± 0.066
Llama-8B 0.219 ± 0.150 0.409 ± 0.054 0.267 ± 0.136 58.561 ± 50.222 0.142 ± 0.110
o3-mini 0.455 ± 0.203 0.491 ± 0.072 0.459 ± 0.153 40.654 ± 37.081 0.086 ± 0.069
Qwen-32B 0.290 ± 0.171 0.435 ± 0.063 0.332 ± 0.145 50.952 ± 36.189 0.123 ± 0.085
QwQ 0.485 ± 0.197 0.502 ± 0.071 0.483 ± 0.143 40.290 ± 32.571 0.085 ± 0.063
Random 0.131 ± 0.101 0.379 ± 0.040 0.179 ± 0.099 67.809 ± 44.913 0.158 ± 0.093

Table 4: Aggregate name-assisted metrics: precision, recall, F1, SHD, and normalized SHD. Performance is poor
despite providing node names, highlighting that reasoning is required for the task beyond node identification.

F1 of 0.57, yet this reduces by almost half to 0.31
for samples where more than half of the nodes are
confounding. This trend shows that while models
struggle for all degrees of confounding, they espe-
cially struggle when they must use causal reasoning
to infer information from the text. This finding is
corroborated by analysis using an alternate, stricter
definition of confounding (see Appendix F).

5.3 Evaluation under Varying Input Sizes

We also investigate the effect of input size on per-
formance. This includes the length of the source
text, number of edges in the ground-truth graph,
and number of nodes in the ground-truth graph.
We report the difference in performance between
the small and large samples in Table 5. We measure
length using number of characters rather than to-
kens to standardize comparison. Counterintuitively,
there is a positive trend between increasing size
and model performance. We investigate this by
analyzing the relationship between degree of con-
founding and size. Due to the large variation in
size, we analyze using a log scale. We find that
text size, number of nodes, and number of edges
each have a small, negative correlation with degree
of confounding (with R2 values of 0.187, 0.002,
and 0.006 respectively). This explains some of
this trend given the strong relationship between de-
gree of confounding and performance. We include
charts visualizing this relationship in Appendix H.

Model Text Edges Nodes

QwQ +0.016 ± 0.284 +0.004 ± 0.266 +0.055 ± 0.266
Llama-8B –0.013 ± 0.283 +0.010 ± 0.281 –0.000 ± 0.266
Qwen-32B +0.058 ± 0.287 –0.129 ± 0.293 –0.088 ± 0.287
o3-mini +0.031 ± 0.285 –0.061 ± 0.298 +0.055 ± 0.283
R1 +0.037 ± 0.250 +0.003 ± 0.290 +0.016 ± 0.254

Table 5: Difference in model performance (mean ±
std) between the top and bottom quartiles of text length,
edge count, and node count. Positive values indicate
improved performance on larger instances.

5.4 Ablation Study: Name-Assisted
Generation

To investigate the extent to which poor model per-
formance is explained by node identification or
deeper causal reasoning, we conduct an ablation
experiment in which models are explicitly provided
with the complete set of ground-truth node names.
Under these conditions, evaluation is determinis-
tic, isolating the effects of LLM-based grading and
node identification from that of edge causality.

Table 4 shows results from this controlled sce-
nario. While models trivially achieved perfect
node-level precision and recall by design, the ex-
pected improvements in causal inference were lim-
ited: edge-level F1 slightly improved for stronger
models such as R1 (by only +0.025) and o3-mini
(by +0.044). Meanwhile, weaker models like
Qwen-32B and Llama-8B saw reductions in perfor-
mance, declining by −0.049 and −0.035 respec-
tively. SHD similarly showed minor improvements,
suggesting that explicitly provided node schemas
do not have a consistent effect on performance.

Though the deterministic evaluation and LLM-
as-a-Judge approaches are not directly compara-
ble—due to the differing tasks and the fine-grained
vs binary assessments of each measure—both eval-
uation approaches show similar results. Despite
removing entity recognition uncertainty, models
continue to perform poorly at correctly inferring
causal relationships, with causal reasoning as a
fundamental bottleneck. The consistent findings
between both evaluation methods lends credibility
to the effectiveness of the LLM judge. This abla-
tion highlights that the poor performance of LLMs
on ReCAST is due to fundamental limitations in
their causal reasoning capabilities rather than being
limited to errors in surface-level entity recognition.

5.5 Case Study - R1 Model Answer
To illustrate model performance on realistic causal
reasoning, we show a benchmark sample about
livelihood efficiency in the Qinba Mountains. We



R1 Chain-of-Thought Excerpt

. . . In the Materials and Methods, they mention. . .

auxiliary variables (savings, non-farm income, per

capita arable land), and constants (region area,

precipitation, etc.). . .

County’s arable land area (18) -> Cash crop cultivation

(10) (if less land, shift to cash crops). . . Cash crop

cultivation (10) -> Farmers’ income (maybe part of

non-farm income, but non-farm income is separate. Cash

crop would be part of farm income. . .

county financial capital increases lead to

infrastructure and loan access. . .

- Loan usage flexibility -> Diversified investments

(cash crops, etc.)

Figure 3: Verbatim excerpts from reasoning trace. El-
lipses added for readability and bold for emphasis.

focus on a subset of the graph that shows the causal
relationship between various climate and land fac-
tors with grain production and overall economic
output. We analyze the performance of R1 on this
representative subgraph. The text describes these
relationships most clearly in this passage:

Land and climate are the fundamental
conditions for agricultural production. . . .
therefore, sunshine, precipitation, and
arable land area were selected to repre-
sent the natural capital of the county.

Even for this straightforward description, R1
fails to correctly include this relationship in its
answer. As shown in bold in Figure 3, while R1
initially correctly identifies that precipitation is a
relevant factor, it thereafter overlooks inclusion of
every climate driver in its final causal graph. It
does not include Annual precipitation or Annual
sunshine hours despite their explicit mention as fun-
damental drivers. Similarly, it mentions how cash
crop cultivation is a part of farm income, which is
similar to GDP, but fails to elaborate on this. It also
swaps the broader variable Total grain output for a
narrow focus on Cash crop cultivation. It generates
an erroneous link between loan usage flexibility
and cash crop cultivation; however, loan flexibility
relates to financial capital and coordination mecha-
nisms, not crop selection decisions.

As shown in Figure 4, of the four ground-truth
edges relevant to its subgraph, the model captures
only one relationship partially by oversimplifying,
omits three entirely, while adding one another er-
roneously. This shows how, even with straightfor-
ward textual cues, evaluated LLMs still struggle
at causal reasoning. We include a complementary

County’s
arable land area

Loan usage
flexibility

Cash crop
cultivation

Annual
precipitation

Annual
sunshine hours

Arable land
in county

Total grain
output County GDP

Figure 4: Top: R1 model subgraph, with the spurious
link in red. Bottom: the ground-truth causal subgraph.

human expert case study for this sample in Ap-
pendix D.

6 Discussion and Conclusion

Understanding causal relationships from text, a
core aspect of human cognition, is essential for
advancing LLMs towards artificial general intelli-
gence. However, evaluating this skill under real-
world conditions has been limited by the lack of
appropriate benchmarks. This paper introduced
ReCAST, which is, to our knowledge, the first
benchmark to assess LLM causal reasoning capa-
bilities from text under realistic conditions. Re-
CAST draws diverse samples from academic lit-
erature, featuring texts varied in length, relational
complexity, and domain, thereby incorporating the
challenges of real-world causal reasoning.

Extensive experiments utilizing ReCAST re-
vealed that state-of-the-art LLMs struggle signif-
icantly with this task, with the best-performing
model achieving an average F1 score of just 0.477.
In-depth analysis identified common pitfalls, in-
cluding challenges with implicitly stated informa-
tion and distinguishing relevant causal factors from
surrounding contextual details across lengthy pas-
sages. Notably, performance remained poor even
under low degrees of confounding or when node
identification was simplified, indicating the primary
bottleneck lies in causal reasoning itself. ReCAST
offers a robust platform for systematically charac-
terizing these deficiencies. It serves as a valuable
tool for the research community, enabling more tar-
geted investigations into LLM limitations. These
insights directly inform the development of next-
generation models, advancing efforts towards more
sophisticated causal reasoning abilities in LLMs.



7 Limitations

While ReCAST establishes a valuable methodology
for assessing realistic causal graph generation from
text, several limitations should be noted. Firstly,
the ground-truth causal graphs are derived from ex-
isting economics literature. While these sources are
peer-reviewed and provide authentic complexity,
they may reflect domain-specific simplifications or
particular theoretical assumptions inherent to the
original research. This establishes a practical upper
bound on achievable performance by any model
and means the evaluation is against one specific in-
terpretation of causality within that text. Secondly,
the use of open-access source documents, essential
for benchmark accessibility, introduces the possibil-
ity that some texts were part of the evaluated LLMs’
pre-training data. Our analysis regarding knowl-
edge cutoffs (Appendix K) suggests this did not
significantly impact results for the models tested,
but it remains a general consideration as the pre-
cise contents of large pre-training corpora are often
opaque.

Thirdly, while benchmark samples are drawn
from diverse sub-domains within economics, the
benchmark’s overall focus on this single academic
discipline may still limit the diversity of causal
phenomena and linguistic expressions of causal-
ity encountered. This could influence the direct
generalizability of findings to fields with differ-
ent conventions. Fourthly, our methodology in-
corporates LLMs for several post-processing steps
and, crucially, for the LLM-as-a-Judge evaluation.
While efforts were made to ensure robustness (e.g.,
through specific prompting, tool use, and abla-
tions with deterministic evaluation), this introduces
the potential for LLM-specific biases or inaccura-
cies in these automated steps. For instance, the
LLM Judge’s assessment, despite careful calibra-
tion, might subtly favor certain graph characteris-
tics. Finally, the task is simplified by providing
models with the target number of nodes for the
causal graph, which differs from the fully uncon-
strained nature of some real-world causal discovery
scenarios where identifying the relevant variables
and their appropriate level of abstraction is a key
part of the challenge.

8 Ethics Statement

Annotator Data Ground-truth annotations for Re-
CAST were sourced from economics students par-
ticipating for opt-in extra credit. No personally

identifiable information (PII) besides name was
collected (to assign credit), which has since been
destroyed, guaranteeing complete anonymization.
Participants were explicitly informed that their
anonymized annotation data would be used for re-
search use. Given this de-identification, formal
IRB review was not required.
Use of AI Assistants AI assistants aided in litera-
ture review, drafting, coding, and data processing,
under human direction and review.
Benchmark Responsible Use ReCAST consists
of English-only academic texts (primarily in eco-
nomics), which may introduce linguistic or domain-
specific biases. The ReCAST dataset, consistent
with its source data, is intended for research. While
advancements in AI causal reasoning could be mis-
used, ReCAST is intended to foster responsible
research and development of beneficial AI systems.
We are committed to transparency and will pub-
licly release ReCAST and associated code. Source
academic papers are used under their original open-
access licenses (details with dataset release).
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A Detailed Comparison with Causal
Reasoning Benchmarks

This section provides a comparative overview of
ReCAST against existing benchmarks for causal
reasoning. While each benchmark contributes
to understanding LLM capabilities, ReCAST is
specifically designed to test the construction of
complex causal graphs from long-form, real-world
academic texts. We evaluate benchmarks based on
their diversity and complexity. In this context, we
consider a benchmark diverse when it spans many
domains or sub-domains, or draws data from many
different types of sources. Meanwhile, we deem a
sample complex when there are varied degrees of
confounding in samples; that is, that the benchmark
features many samples that are not highly explicit,
requiring that causal reasoning, rather than mere
reading comprehension, to be used. Lastly, we
also examine the realism (of the source data) - is
it drawn from the real-world? The following table
offers a high-level visual comparison, with further
details on each benchmark discussed subsequently.

Discussions of Selected Benchmarks

The following discussions provide context for the
data presented in Table 6, highlighting their ap-
proaches and how we notably differ from this prior
work. While these works are valuable, prior work
fails to measure the causal reasoning abilities of
LLMs from text under real-world settings. We
highlight the approach of each benchmark, and
how they compare to ReCAST.

Several benchmarks concentrate on pairwise
causal relations, include inputs that are highly ex-
plicit, or have inputs that are generated syntheti-
cally or are crafted as short texts by hand. We dif-
fer from these approaches by aiming to construct
large graphs from real-world literature. ExpliCa
(Miliani et al., 2025) examines how LLMs un-
derstand explicit connectives in sentence pairs, re-
sulting in 2-node links. By design, it uses very
short, often crafted inputs and focuses on explicit
cues, thereby avoiding the complexities of implicit
causality and information integration from exten-
sive texts that ReCAST targets. Meanwhile, LLM
Fallacies (Joshi et al., 2024b) employs short, syn-
thetic scenarios to test pairwise causal inference,
focusing on logical fallacies when LLMs are pre-
sented with explicit non-causal information. While
this addresses a specific type of reasoning complex-
ity, its synthetic and brief inputs differ greatly from

the real-world, extensive texts and broader graph
construction task in ReCAST. Plausibly Exoge-
nous Galore (Oh, 2025) serves as an interesting
bridge, as it uses long economics documents simi-
lar to ReCAST. However, its task is to find only the
main pairwise link for the entire document, which
greatly limits its diversity and complexity.

Another group of benchmarks attempt graph con-
struction, but typically rely on short, simplified, or
synthetic descriptions. These lack the depth and
realism of long, real-world texts. From text to
map (Hosseinichimeh et al., 2024) generate rel-
atively small graphs (max 9-15 nodes) from con-
cise, hand-crafted descriptions. Such inputs in-
herently limit textual diversity and likely feature
more explicit causal links, sidestepping the chal-
lenge of parsing lengthy, nuanced documents with
varying levels of confounding. Failure Modes
of LLMs for Causal Reasoning on Narratives
(Yamin et al., 2024) also uses short, often synthetic
or CauseNet-derived narratives for constructing lin-
ear chain graphs (max 20 nodes). While it explores
LLM biases and indirect effects, its input lacks the
textual diversity and structural graph complexity
of ReCAST, and its narratives are purpose-built
rather than reflecting the reasoning of real-world
conditions.

Other benchmarks focus on a sentence-level anal-
ysis, or offer broader surveys of causal tasks where
individual components may use non-primary in-
puts or address different facets of reasoning. From
Text to Model (Veldhuis et al., 2024) (NLP for
SD) measures the ability of LLMs to classify indi-
vidual sentences from real-world texts for causality.
While it uses real-world text, it uses small excerpts,
and avoids the complexities of reasoning over large
documents. Causal Reasoning Survey (Kıcıman
et al., 2024) provides a wide-ranging overview
of LLM capabilities across multiple causal tasks.
However, its sub-tasks often use short or structured
inputs (e.g., variable lists for graph construction,
concise vignettes for reasoning), which differ from
ReCAST’s reliance on extensive, unmodified aca-
demic texts for end-to-end graph extraction.

To the best of our knowledge, ReCAST is the
first benchmark for LLMs to measure the causal
reasoning abilities from diverse, complex, real-
world texts. While previous benchmarking efforts
have explored lengthy, diverse, and complex texts,
causal reasoning, and real-world conditions sepa-
rately, we are the first to do so at once.



Benchmark Primary Task Long Text Input Type Max Nodes Diverse Complex Realism
ExpliCa (Miliani et al., 2025) Pairwise ID ✗ Sentences 2 ✗ ✗ ✗

LLM Fallacies (Joshi et al., 2024b) Pairwise Inference ✗ Scenario/Vignette 2 ✗ . ✗

Plausibly Exogenous (Oh, 2025) Pairwise ID ✓ Full Document 2 ✓ . ✓

From text to map (Hosseinichimeh et al., 2024) Graph Construction ✗ Short Narratives 15 ✗ ✗ ✓

Failure Modes (Yamin et al., 2024) ID/Graph Construction ✗ Short Narrative 20 ✗ . .

From Text to Model (Veldhuis et al., 2024) Sentence Classification ✗ Sentences N/A ✗ . ✓

Causal Reasoning Survey (Kıcıman et al., 2024) Multiple Tasks ✗ Mixed Varies . . .

CLadder (Jin et al., 2024) Causal QA ✗ Narrative/Question 4 ✗ ✓ ✗

CausalBench (Zhou et al., 2024) Causal Structure ID ✗ Query/Question 109 . . ✓

COLD (Joshi et al., 2024a) Causal QA ✗ Query/Question 33 . ✓ ✓

CaLQuest.PT (Lasheras and Pinheiro, 2025) Causal QA ✗ Query/Question N/A ✓ ✓ ✓

ReCAST (Ours) Graph Construction ✓ Full Document 140 ✓ ✓ ✓

Table 6: Visual comparison of ReCAST with other causal reasoning benchmarks. Primary Task (e.g., Graph
Construction: Graph Construction; Pairwise ID: Pairwise Identification; QA: Question Answering). Long Text:
Indicates if the benchmark primarily uses long textual inputs. Input Type (e.g., Document, Narrative, Scenarios,
Queries, Sentences). Max Nodes: Maximum nodes per instance for graph construction or the underlying model.
Symbols for realism criteria (Diverse, Complex, Realism): ✓: Fully meets criterion; .: Partially meets criterion;
✗: Does not substantially meet criterion, relative to ReCAST’s focus on long-text graph extraction.

B Domain Statistics

Model 0–1 Domains 2 Domains 3+ Domains Base Accuracy

R1 0.493± 0.176 0.457± 0.208 0.499± 0.125 0.477 ± 0.125
QwQ 0.461± 0.178 0.446± 0.210 0.416± 0.164 0.450± 0.194
o3-mini 0.409± 0.192 0.421± 0.213 0.415± 0.172 0.415± 0.201
Qwen-32B 0.375± 0.187 0.388± 0.215 0.364± 0.187 0.381± 0.201
Llama-8B 0.323± 0.213 0.290± 0.199 0.262± 0.140 0.302± 0.201

Table 7: Model performance by number of associated
domains per sample, showcasing how models perform
across different domain complexities, classified as 0–1,
2, or 3+ co-domains. Notably, R1 achieves the high-
est accuracy in single-domain samples, suggesting that
models may struggle with cross-domain reasoning. Con-
versely, QwQ and o3-mini perform slightly better with
increased domain diversity, reflecting some adaptability
to multi-domain causal reasoning.

To be able to assess the domain coverage of Re-
CAST, we first manually create broad domain cat-
egories, aiming to minimize overlap between do-
mains while simultaneously ensuring that all sam-
ples belong to at least one domain. It is valuable
to go beyond binary classification (economics or
not), as information about domains in the samples
is valuable for analysis of model performance. We
manually prompt engineer to create the domain
categories, aiming to minimize overlap between
domains and ensure that each sample falls into at
least one domain. To generate initial domain cat-
egories before manual optimization, we prompt
LLMs to generate categories based on all paper
titles. To minimize the risk of false positives, we
aim for conservative domain labeling. For exam-
ple, we choose the name “Environmental & Earth
Sciences” for domain #5 to ensure that economics
papers about sustainability are correctly classified
into domains #2 and #5. We use R1 model to au-

tomatically classify each sample by domain, as
manual validation showed high classification ac-
curacy and adherence to output formatting. Each
paper’s title and abstract as context to ensure suf-
ficient context to classify while minimizing total
tokens. We use the following prompt:

Domain Classification Prompt

You are an expert at correctly labeling
domains. You will be given a published
paper’s title and abstract. You will label
each other domain of the paper based on the
content. You may pick more than one domain
when applicable. Only choose domains from
the list below. Choose every domain that
is present in the paper. There may not
be any domains from the options present
in the paper. Respond with the numbers
corresponding to the domains in a JSON
list with no other text.

The domains are:
1: Agriculture & Food Systems
2: Economics & Public Policy
3: Education
4: Engineering & Technology
5: Environmental & Earth Sciences
6: Medicine

EXAMPLE INPUT:
Title: "The impact of AI on job markets"
Abstract: "This paper explores the impact
of AI on job markets and the future of
work."

EXAMPLE OUTPUT:
{ "domains": [2, 4] }

Each sample that it classified as non-economics
is manually reviewed for accuracy, with correctly
classified non-economics samples excluded from
the benchmark. We manually review each sample
classified as non-economics for accuracy to ensure



valid benchmark samples are not erroneously ex-
cluded. After excluding non-economics papers, we
finalize the benchmark samples, resulting in 292
included samples. Figure 5 shows the distribution
of the number of non-economics domains for each
sample, with an average of 1.67 non-economics do-
mains per sample. We note that it is expected that
almost no samples had no non-economics domains,
as economics is inherently multidisciplinary.

As previously described, each sample in Re-
CAST belongs to Economics and at least one ad-
ditional domain. On average, each sample spans
2.35 domains, with Engineering & Technology and
Environmental & Earth Sciences being the most
prevalent.

Performance is largely stable across samples
with 0-1, 2, or 3+ co-domains. Interestingly, R1
scores highest on single-domain samples, suggest-
ing less cross-domain complexity may support
stronger graph alignment. In contrast, QwQ and
o3-mini slightly improve with increased domain
count, showing some benefit from interdisciplinary
contexts.

Overall, these results emphasize the importance
of domain-sensitive evaluation. Variation in model
performance across domains confirms that Re-
CAST captures diverse economic sub-domains in
a way that differentiates LLM capabilities under
realistic conditions.

Figure 5: Distribution of domain counts per sample
(n = 292), illustrating the multidisciplinary nature of
economics-based samples in ReCAST. Most samples
are associated with multiple domains, highlighting the
inherent complexity of real-world economic causal rea-
soning.

While domain does have an effect on perfor-
mance, the magnitude of such effect is not large.
This is not surprising, as LLMs have seen these
domains many times before during training. As
shown in Figure 6, R1 (et al., 2025) boasts the
highest performance across all domains, except for

Figure 6: Radar chart of domain-specific accuracies for
each model, depicting the accuracy of different models
across specific domains. Variability in performance
across domains highlights the contextual challenges
faced by models in domain-specific causal inference,
pointing towards the need for domain-sensitive model
adjustments.

Agriculture & Food Systems, where QwQ (Team,
2025b) narrowly outperforms it. However, all mod-
els perform poorly overall regardless of domain,
showing that this is not the factor that leads to poor
causal reasoning.

Figure 7 visualizes how often each domain ap-
pears in the benchmark samples. Engineering &
Technology and Environmental & Earth Sciences
comprise the majority of samples, appearing in
over 60% of samples. As these domains appear
more frequently for PLOS and MDPI economics
papers, it is not surprising that they compose an
outsized portion of the dataset. Additionally, we
intentionally choose broad categories for domains
to ensure sufficient samples for analysis, as there
is substantial diversity within each domain. Even
for smaller domains, there are sufficient samples to
analyze performance.

We also include the distributions of journals the
samples were originally published in as an alter-
native measure of domain. As we intentionally
choose broad domain categories, this can act as a
measure of sub-domain.

C Effect of Length of Reasoning Trace

We investigate how the length of chain-of-thought
reasoning affects model performance. For each
open-source reasoning model, we split data into
one thousand token wide bins, and display the
quantities of each token amount in Figure 9 and
Figure 10. Interestingly, QwQ has some reasoning



Figure 7: Domain distribution across 292 samples with
processed text (excluding economics).

Figure 8: Distribution of journal for all ReCAST bench-
mark samples.

traces which are far longer than the longest rea-
soning traces from R1, which we attribute to the
different training for each of these models. Addi-
tionally, manual inspection showed that some of
these longer traces were due to repeatedly mak-
ing small changes to formatting, which indicates
that these responses did not spend more time on
actual reasoning, and may have largely been due to
QwQ’s worse performance at formatting.

Figure 9: QwQ token length distribution. The data
suggests that QwQ maintains a relatively consistent dis-
tribution across token lengths, reflecting its structured
handling of reasoning chains. However, performance
did not scale proportionally with longer traces, indi-
cating limitations in handling extended reasoning effi-
ciently.

Figure 10: Distribution of reasoning trace lengths
(in tokens) for R1 across benchmark samples. The
model tends to produce mid-length reasoning traces
(2,000–7,000 tokens), with very few exceeding 12,000
tokens.

D Human Domain Expert Case Study

While large language models struggle to construct
accurate causal graphs under realistic conditions,
this task is feasible for human experts. To demon-
strate this, we conduct a small-scale case study
where an expert economist constructs a causal
graph from the same input text used in the R1
model case study (subsection 5.5). Due to the



highly time-intensive nature of human causal graph
construction and annotation (Kim and Andersen,
2012), we include only this case study for this
sample. We show only a representative subgraph
slice of their answer to allow for direct compar-
ison, as full graphs are too large to allow for
concise comparisons. As shown in Figure 11,
the expert successfully captures the three core
causal drivers: annual precipitation, annual
sunshine hours, and County arable land
area. These are all mapped to a unified eco-
nomic outcome, total household income, re-
flecting a broader—but valid—abstraction of the
two-hop causal path present in the ground-truth
graph (Total grain output → County GDP).
This demonstrates that the task is tractable for hu-
mans, and the importance of evaluation that dif-
ferentiates stylistic variations from mistakes in the
core causal logic.

annual
precipitation

annual
sunshine hours

County arable
land area

total household
income

Annual
precipitation

Annual
sunshine hours

Arable land
in county

Total grain
output County GDP

Figure 11: Top: Subgraph generated by a domain expert,
with node labels shown verbatim. Bottom: Ground-truth
subgraph. The expert’s graph aggregates intermediate
steps (e.g., Total grain output and County GDP)
into total household income, but preserves all core
causal relationships. This highlights expert-level ability
to abstract while retaining semantic fidelity.

E Efficacy of GNNs

As we aim for an automated graph-based met-
ric, a graph neural network (GNN) is a natural
first choice. However, they have several flaws
for acting as an evaluator of this task. Methods
like Token Embedding-Aligned Graph Language
Model (TEA-GLM) (Wang et al., 2024) produce

Model Standard Name-Assist ∆

R1 0.926 0.924 −0.002
Llama-8b 0.909 0.910 +0.001
o3-mini 0.922 0.930 +0.008
Qwen-32b 0.912 0.917 +0.005
QwQ 0.922 0.923 +0.001

Table 8: Cosine similarity (∆ = Name-Assist −
Standard) under standard vs name-assisted TEA-GLM
conditions. Minimal differences indicate that Name-
Assist does not significantly enhance alignment with
ground truth. The results raise questions about the ef-
fectiveness of name-assisted strategies for improving
causal graph accuracy.

embeddings for graphs, allowing similarity to be
measured via cosine distance. However, these ap-
proaches fall short in settings like ours that re-
quire semantic fidelity and textual grounding. First,
GNN-based methods operate purely over graph
structure and do not have access to the source
text, making them unable to evaluate whether a
predicted graph is faithful to the information pro-
vided. Second, they reduce a graph comparison
to a single scalar score, such as cosine similarity,
which offers little interpretability and no insight
into specific errors in nodes or edges. Third, we
find in practice that GNN embeddings are insen-
sitive to meaningful differences: in our ablation
(see Table 8), models that were explicitly given the
correct node names showed nearly identical scores
to those that were not, highlighting their lack of
resolution. As such, while GNN-based methods
remain a compelling direction for graph-level em-
bedding, we find them unsuitable for evaluating
text-grounded causal graphs where variable nam-
ing, semantic meaning, and abstraction play a criti-
cal role.

Table 8 shows the mean cosine similarity be-
tween the TEA-GLM embedding of each gener-
ated graph and its ground-truth counterpart un-
der both conditions. In addition to the previously
identified flaws, these results cast doubt onto the
feasibility of GNNs as evaluators for this task.
As the table shows, the maximum increase when
the model is given the ground-truth node names
(prompt described in Appendix R) is only +0.008
(for o3-mini), and one model (R1) even decreases
by –0.002. These negligible differences cast doubt
on the evaluation capabilities of the graph embed-
ding model for this task, as substantial information
being provided to models has little effect on the
final embedding score.



F Alternative Measure of Degree of
Confounding

As shown in Figure 2, degree of confounding has
a noticeable effect on model performance. For
this, we determine whether a node is confounding
by determining if it is explicitly mentioned in the
text (or not). Given the large effect of degree of
confounding in performance, we explore if this re-
lationship holds under different measures of the
degree of confounding. As detailed in Appendix L,
each node in each graph is labeled as either ex-
plicit (the node was explicitly mentioned in the
text), implicit (the node was implicitly or indirectly
mentioned), or absent (the node was entirely un-
mentioned). Previously, we showed performance
for the “lenient” measure of confounding, where
we measure whether a node was mentioned explic-
itly, or if it was implicit/absent. We recalculate
the degree of confounding for each sample for the
“strict” measure as shown below.

DCstrict =
1

|V |
∑
v∈V

{
1, if v ∈ A,

0, if v ∈ E ∪ I

Figure 12: Definition of DCstrict (degree of confound-
ing) under the strict criterion, providing a quantitative
measure of causal complexity. For each node v in a
sample V , we determine whether it is absent (A), or
either explicit (E) or implicit (I). We count only absent
nodes toward the confounding score and compute the
average over all nodes in the sample.

Under this alternative measure of degree of con-
founding, at a given level of confounding, the
“strict” measure is expected to be more difficult,
as a node that is entirely absent is harder to identify
than one that is implicitly or indirectly described.
As shown in Figure 13, the negative relationship
between degree of confounding and performance
holds. Performance is also consistently worse for
all models under the strict confounding definition
rather than the lenient one, as expected, adding
credibility to the validity of the automated labeling.

G Base Model Case Study

As ReCAST is designed to measure the capabilities
of LLMs on this task, we investigate the perfor-
mance of base models. We use the Qwen-2.5-7B
base model (Team, 2024), and prompt it to generate
an open-ended graph. As base models are trained

Figure 13: Average model scores across 20 % confound-
ing bins (strict definition).

only to complete the text rather than respond to
user instructions, it is unsurprising that comple-
tions were nonsensical. As with all responses, we
prefill the models’ response to begin with <think>
to steer it towards using chain-of-thought thinking
before responding, which in rare cases results in a
valid model output.

Endlessly Repeating Base Model Output

<think>Assistant
Assistant
Assistant
Assistant
Assistant
Assistant
Assistant

For endlessly repeating generations, they out-
put the same tokens until reaching the maximum
tokens. For this reason, we reduce the maximum to-
kens for Qwen-2.5-7b to 10,000 for computational
reasons, as valid generations did not come close
to this maximum. Another common failure mode
was immediately outputting the end of string to-
ken, resulting in no output tokens being outputted.
Another failure mode was nonsensical generations,
such as generating Chinese despite the text and in-
structions being in English. We show this example
below.



Foreign-Language Base Model Output

<think>建立一个因果关系图需要遵循以下步
骤：

1. 确定因果关系：首先需要确定因果关系，即
哪些变量是因，哪些变量是果，以及它们之间
的关系是什么。在本例中，我们已经确定了一
些变量之间的因果关系，例如生产、生活和生
态之间的关系。

2. 创建节点：每个变量都可以作为一个节点，
用圆圈或方框表示。例如，我们可以创建三个
节点，分别表示生产、生活和生态。

3. 连接节点：使用箭头连接节点，表示因果关
系的方向。例如，我们可以从生产节点连接到
生活节点，表示生产对生活有影响。

4. 标注节点：为每个节点添加标签，表示其含
义。例如，我们可以为生产节点添加“生产”标
签，为生活节点添加“生活”标签，为生态节点
添加“生态”标签。

5. 添加其他变量：除了已知的变量外，还可
以添加其他变量，以更全面地描述因果关系。
例如，我们可以添加人口、GDP、土地利用等变
量。

6. 检查因果关系：最后，需要检查因果关系是
否合理，是否存在循环因果关系等。例如，生
产对生活有影响，生活对生产也有影响，但这
种关系是否合理需要进一步验证。

根据以上步骤，我们可以建立一个因果关系
图，其中包含生产、生活、生态三个节点，
以及它们之间的因果关系。具体实现代码如
下：</think>```json
{

"relationships": [
{"source": "生产", "sink": "生活"},
{"source": "生活", "sink": "生产"},
{"source": "生产", "sink": "生态"},
{"source": "生态", "sink": "生活"}

]
}
```

We list some other interesting or informative
outputs from the base model as a reference.

Another Endlessly Repeating Base Model Output

<think> editText
editText
<think> editText
editText
<think> editText
editText
<think> editText

In rare occurrences, the model generated valid-
looking responses, although the graph is far smaller
than expected. We attribute its occasional success
to the practice of including a small amount of in-
struction data into base models, which allows it to

occasionally exhibit behavior normally reserved to
instruction-tuned models.

Coherent Base Model Output

<think> To generate a causal graph for
the provided markdown text, we first need
to identify the relationships between the
different factors and how they influence
each other. Based on the information
provided, we can create a causal graph with
the following relationships:

```json
{

"relationships": [
{"source": "technological breakthrough",

"sink": "ITI development"},
{"source": "management level",
"sink": "ITI development"},
{"source": "resource reserve",
"sink": "ITI development"},

{"source": "agglomeration spillovers",
"sink": "ITI development"},
{"source": "policy assistance",
"sink": "ITI development"},
{"source": "industrial transfer",
"sink": "ITI development"},
{"source": "market demand",
"sink": "ITI development"}

]
}
```

This causal graph shows the different
factors and their influence on the ITI
development. Each node represents a factor,
and each arrow represents the influence of
one factor on another. The causal graph is a
simple representation of the relationships
between the different factors and how they
impact the ITI development.

H Size vs. Confounding

We provide the following charts as a reference to
visualize the relationship between size and degree
of confounding.



Figure 14: Relationship between text length and de-
gree of confounding. This scatter plot shows each sam-
ple’s character count on the x-axis versus its degree of
confounding on the y-axis. There is a modest negative
correlation (R2 = 0.187), indicating that longer texts
tend to include fewer unobserved confounders. This
helps explain why models perform slightly better on
larger input instances, as reduced confounding makes
causal edges easier to identify.

I Computational Costs

Despite the large size of ReCAST samples, its ex-
ecution is notably quite computationally efficient.
The total monetary cost for all experiments, en-
compassing the evaluation of all five LLMs across
the main task and all ablation studies, including the
LLM-as-a-Judge evaluations, remained under $250.
This affordability is largely attributed to the use of
prompt caching for the LLM judge. While the ini-
tial processing of the lengthy source texts incurs a
significant input token cost for the judge, this cost
is a one-time expense per benchmark sample. Sub-
sequent judgments on different model outputs for
the same sample, or re-evaluations, benefit greatly
from caching the expensive text embedding, mak-
ing the iterative evaluation process highly econom-
ical. This efficient design ensures that ReCAST
can be utilized and extended by researchers with-
out imposing prohibitive computational or financial
burdens.

J Inter-Annotator Agreement Details

To ensure the accuracy of the benchmark ground-
truth graphs, we measured inter-annotator agree-
ment by having a second annotator independently
transcribe 37 randomly selected causal diagrams
from the source papers (∼ 15% of the full dataset).
These diagrams included 778 directed edges and
616 nodes in total. We compare the two annotators’

Figure 15: Relationship between nodes and degree of
confounding. Here, each point represents a sample’s
ground-truth graph node count plotted against its con-
founding level. The near-zero correlation (R2 = 0.002)
shows that graph size hardly affects how many variables
are unobserved in the text. This suggests that node count
alone does not predict the difficulty introduced by hid-
den confounders.

transcriptions at both the node-level and edge-level,
and compute standard metrics: precision, recall, F1

score, SHD, and normalized SHD.
Edge-Level Agreement. Out of 778 annotated

edges, 22 edges were missed by the second an-
notator (false negatives), and 5 extra edges were
incorrectly added (false positives). There were no
instances of edges that had flipped directions, nor
nodes that were entirely missed. This yields:

Precision =
TP

TP + FP
=

751

751 + 5
= 0.993,

Recall =
TP

TP + FN
=

751

751 + 22
= 0.972,

F1 = 0.986,

SHD = 27,

κ = 0.94

Cohen’s κ statistic reflects near-perfect agree-
ment at the edge level and is defined as:

κ =
po − pe
1− pe

where po is the observed agreement and pe is the
expected agreement by chance, computed over all
possible directed pairs.

Node-Level Agreement. Among the 616 nodes,
we observed:

• 8 auto-correctable typos (e.g., “carbondioxide”
→ “carbon dioxide”).



Figure 16: Relationship between edges and degree of
confounding. This chart plots the count of true causal
edges for each sample against its confounding degree.
With a very small negative correlation (R2 = 0.006),
edge density has minimal impact on how many con-
founders remain implicit. Models thus face similar
challenges inferring hidden variables regardless of edge
complexity.

• 4 minor differences (e.g., prefix/suffix omis-
sions such as “CO2 emissions” vs. “emis-
sions”).

• No major label mismatches (0 spurious or
missing nodes).

This results in a node-level F1 score of 0.997.
Sample-Level Error Overview. We provide

a high-level summary of the agreement between
annotators.

The following is a summarized view of the per-
sample disagreement between annotators.

This agreement analysis shows that human an-
notators were highly consistent, with virtually no
spurious nodes and very few edge disagreements.
These results validate the overall accuracy and reli-
ability of the benchmark’s gold-standard graphs.

K Effect of Knowledge Cutoff

To investigate whether the models’ performance on
ReCAST is influenced by their knowledge cutoff
dates (i.e., whether they might have encountered
some of the source texts during their pre-training),
we conducted an analysis comparing performance
on papers published before and after a nominal
cutoff. We selected two models for this analysis,
Llama-8B and o3-mini, as their stated knowledge
cutoffs are prior to 2024. This allows us to treat
papers published in 2024 and onwards as more
likely “unseen” by these models.

Our dataset contains 35 samples derived from
papers published in 2024 or later. For Llama-8B,
229 samples were from papers published before
2024, and for o3-mini, 235 samples were from
papers published before 2024. We compare the
average F1 scores achieved by these models on
these two subsets of ReCAST.

Table 11 shows the performance of the selected
models on the 35 samples from papers published
in 2024 onward. Table 12 shows their performance
on samples from papers published before 2024.

Observing the mean F1 scores, both models
show slightly higher average performance on the
more recent papers. For Llama-8B, the average
F1 score increased from 0.300 on older papers to
0.315 on recent papers. For o3-mini, the average
F1 score increased from 0.410 to 0.452.

To determine if these differences are statistically
significant, we performed a Mann-Whitney U test
comparing the F1 scores from the “recent” (2024
onwards) and “older” (pre-2024) groups for each
model.

• For Llama-8B: The p-value was 0.5356. (Re-
cent mean F1: 0.315, Older mean F1: 0.300).

• For o3-mini: The p-value was 0.4074. (Re-
cent mean F1: 0.452, Older mean F1: 0.410).

In both cases, the p-values are well above the
common significance threshold of 0.05. This in-
dicates that there is no statistically significant dif-
ference in performance between papers published
before and after the models’ nominal knowledge
cutoff dates for the ReCAST task.

This finding suggests that the models’ ability (or
inability) to infer causal relationships from the pro-
vided texts in ReCAST is not strongly dependent
on whether they might have encountered the spe-
cific source documents during pre-training. The
task, by its nature, requires reasoning based on
the extensive context provided within each sample,
rather than direct recall of information from spe-
cific papers. The consistent performance across
older and potentially “unseen” recent texts further
underscores that the challenges highlighted by Re-
CAST are rooted in fundamental causal reasoning
capabilities rather than familiarity with the source
material.



Category Precision Recall F1 SHD Norm. SHD Cohen’s κ

Nodes 0.9943 ± 0.0204 1.0000 ± 0.0000 0.9970 ± 0.0106 0.1081 ± 0.3879 0.0062 ± 0.0223 N/A
Edges 0.9933 ± 0.0182 0.9830 ± 0.0509 0.9876 ± 0.0335 0.7568 ± 2.3756 0.0233 ± 0.0614 0.9865 ± 0.0367
Combined 0.9939 ± 0.0134 0.9897 ± 0.0329 0.9916 ± 0.0224 0.8649 ± 2.6627 0.0162 ± 0.0424 N/A

Table 9: This table reports the mean and population standard deviation of key evaluation metrics over the 37
reconciled graphs. Precision, recall, and F1 quantify label and edge detection accuracy. SHD is the count of false
positives plus false negatives per graph, and the normalized SHD scales this by the total number of gold elements.
Cohen’s kappa is provided for edges only, since it relies on a clearly defined set of negative instances (all possible
directed non-edges); it is not defined for node labeling or the combined set where the universe of “non-nodes” or
joint negatives is ambiguous. The N/A entries indicate those cases where kappa cannot be meaningfully calculated.

Article ID # Nodes # Edges Node FP Node FN Edge FP Edge FN

645 20 24 0 0 0 0
630 25 32 0 0 0 2
617 27 23 0 0 0 0
588 10 16 0 0 0 0
574 19 32 0 0 0 0
566 24 23 1 0 0 1
558 21 24 0 0 0 0
552 16 15 0 0 0 0
536 37 23 0 0 0 0
497 15 20 0 0 1 0
491 12 21 0 0 0 1
486 28 32 0 0 0 0
481 20 28 0 0 0 0
458 18 24 0 0 0 0
449 43 88 0 0 0 0
440 12 15 1 0 0 0
435 26 27 0 0 2 5
410 9 16 0 0 0 0
393 10 14 0 0 0 0
362 11 16 0 0 0 0
306 35 28 0 0 0 0
303 9 10 0 0 0 0
642 18 23 0 0 0 0
259 19 48 2 0 1 12
235 23 26 0 0 1 1
200 16 24 0 0 0 0
156 10 13 0 0 0 0
95 26 39 0 0 0 0
90 15 19 0 0 0 0
74 13 22 0 0 0 0
59 10 14 0 0 0 0
43 15 17 0 0 0 0
42 14 20 0 0 0 0

589 12 16 0 0 0 0
188 12 17 0 0 0 0
168 15 19 0 0 1 0
163 9 11 0 0 0 0

TOTAL 674 879 4 0 5 22

Table 10: Excerpt of per-sample disagreements between
two annotators. Total disagreements: 4 node FPs, 5 edge
FPs, 22 edge FNs. Inter-annotator reconciliation for
37 graphs. Node FP=sum of minor+major node-label
discrepancies; Node FN=no missing nodes observed;
Edge FP=extra edges added spuriously; Edge FN=edges
present in gold but omitted.

L Degree of Confounding Labeling
Prompt

Degree of Confounding is an important attribute of
samples. It can act as a natural measure of difficulty,
as nodes that are explicitly mentioned are easier
to identify than entirely unobserved confounders.
We use R1 (et al., 2025) to label the degree of
confounding for each node in each sample when
provide the ground truth and source text using the
prompt below. To allow for fine-grained analysis of
degree of confounding, we allow for three different
levels of confounding for each node. (i) Explicit
(it or a synonym of the node’s name appears in

Model # Evaluations Average F1 (↑)

Llama-8B 35 0.315± 0.187
o3-mini 35 0.452± 0.208

Table 11: Model Performance on Recent Papers (2024
Onwards)

Model # Evaluations Average F1 (↑)

Llama-8B 229 0.300± 0.203
o3-mini 235 0.410± 0.199

Table 12: Model Performance on Older Papers (Before
2024)

the text), (ii) Implicit (the node implicitly or indi-
rectly appears in the text), or (iii) Absent (the node
does not appear in the text whatsoever). We itera-
tively reject and retry any answers that do not meet
formatting requirements until we receive valid an-
swers for every benchmark sample to ensure that
all samples have confounding levels. We detail the
prompt used for this below. These node-level labels
are used as the basis for calculation of degree of
confounding.



Label Unobserved Confounders Prompt

You will be given a causal graph in
economics and a source text. Your task
is to label each node in the graph to
determine its degree of explicitness in
the text. For each node, there are three
possible levels:
1. The node (or the concept behind it) is
explicitly mentioned in the text
- This can be verbatim, or though use of a
synonym
- It is sufficient to be mentioned in the
text; it is irrelevant if it is mentioned
to be in the causal graph or not
2. The node is mentioned indirectly or
implicitly in the text.
3. The node is unmentioned in the text,
even if related concepts are discussed

Be conservative when determining the degree
of explicitness for each node. Output
only the JSON code block with your answer,
without commentary, reasoning, explanation,
or any other text. You must include the
name of each node in the graph verbatim,
even when the graph is very large, or many
nodes are highly related or seem redundant.

# Expected Output Format

```json
{

"scores": {
"first_node_name": int_score_1_2_or_3,
"second_node_name": int_score_1_2_or_3,

...
"last_node_name": int_score_1_2_or_3

}
}
```

It is MANDATORY to critically and
thoroughly examine each and *every*
node in the causal graph one at a time.
Explicitly think about each node (and
its corresponding relationships where
appropriate) individually, even when it
seems redundant or unnecessary. Even if it
is tedious, you MUST do this and not take
shortcuts.

M Variable Correction

We use the following prompt to correct the raw
variable names extracted after annotation using
o3-mini. To ensure validity, we use code-based
approaches to automatically reject and retry any
answers where all old names did not appear

Variable Correction Prompt

You are a world-class economist. You will
be given a causal loop diagram (CLD) in
JSON format. Your task is to combine
variables that are intended to be the
same, but are not named identically due
to annotation errors. You will do this
by combining variables and choosing which
variable name to keep.

Your task is NOT to functionally alter the
CLD. Be careful to only combine variables
that are intended to be the same and
are different solely due to annotation
errors. When in doubt, do not combine the
variables. Follow these guidelines:
- Avoid combining variables that are
intended to be separate.
- Avoid combining variables that are highly
similar but have different names.
- Do not create new variables or variable
names, nor remove any variables from the
CLD.
- Use the context of the CLD when making
your decision.
- You must choose an existing variable name
or your response will be rejected.
- You must only combine variables that are
intended to be the same.
- Combining variables with more than one
character difference between them is only
done very rarely.

Positive examples:
- "Number of dog" and "Number of dogs"
should be combined into "Number of dogs".
- "number of dogs" and "Number of dogs"
should be combined into "Number of dogs".
Negative examples (do not combine):
- "<variable>" and "variable" should not
be combined since it is clear that they
are intended to be distinct.
- NEVER change any variables with < or >
in the name.
- "Number of dogs" and "Number of hounds"
should not be combined since it is clear
that this isn’t from an annotation error.
- "GDP" and "GNP" should not be combined;
while they are only one letter apart, they
are distinct variables.

Respond with your answer in JSON format and
no other text.
JSON format:

{ "combined_variables": [
{

"old_names": ["variable1",
"variable 1",
"Variable1"],

"new_name": "Variable1"
},
{

"old_names": ["variable2",
"Variable 2",
"variable two"],

"new_name": "Variable2"
}

] }



N PDF-to-Markdown Conversion

We utilize a LLM for the task of converting the text
of the PDF to well-structured markdown as papers
do not follow a consistent format. We find that rea-
soning models struggle at this task, and frequently
fail to follow instructions to output the entire docu-
ment by leaving out large sections of the text. We
note that the normalization tool cannot be used for
this task, as the numerous formatting errors and
in-line citations would require it to be called once
for almost every line of the text, and would result
in an output many times longer than the source text.
Mistral Small (Team, 2025a) follows the conver-
sion instructions at tractable computational costs.
We remove non-textual elements as they would be
difficult to accurately represent in markdown. We
additionally exclude irrelevant elements such as
publication information and references as they are
unrelated the economics task and needlessly inflate
the length of texts. We also remove appendices,
which are usually irrelevant or contain explicit in-
formation about the causal graph.

PDF to Markdown Prompt

Your task is to perform the minimal PDF
pre-processing necessary to convert the
provided PDF into a well-structured md
file. Follow the guidelines below in order
of priority:
1. Modify the text only when absolutely
necessary. The exact wording of the
original paper must be preserved verbatim.
- Do not correct spelling or grammar, even
if it is incorrect
- The response will be rejected if even
a single word is edited or removed
unnecessarily; most of the response
should effectively be copy-pasted from the
original text
- Your response will likely be extremely
long, around the same length as the
original text; this is expected and
normal.
2. Correct any broken text from the
PDF processing and convert it into a
well-structured md file.
- Convert sections and sub-sections into
headings and subheadings
3. Remove the following information in
entirety:
- Images, figures, and any other visual
elements
- References and Citations, including
when in-line. E.g., "[20, 22]" would be
removed.
- Acknowledgments
- Authorship information
- Appendices
- Page numbers

Remember; your only output is the processed
text in full, with no thinking, reasoning,
or other commentary.

O Text Normalization Prompt

In order to ensure the realism of the ReCAST
benchmark, it is important to remove any explicit
references to the causal graph, which make the
task trivial. During this step, we also correct any
references to non-existent elements which were
removed in previous pre-processing steps (for ex-
ample, referencing an image). We utilize a normal-
ization tool to make these changes, which helps
address several limitations of current LLMs. First,
they struggle to output a large text in full, and have
significant computational costs when doing so. Ad-
ditionally, when outputting large chunks of text,
they are prone to hallucinations and excessive ed-
its, which are inappropriate. Using a tool also al-
lows us to use code to check that the changes are
valid; that is, that the start and end text are actually
present in the text. We note that LLMs often strug-
gle to account normalizations that overlap, even



with specific prompting for this. In this case, a nor-
malization will fail, and the entire response will be
rejected. We iteratively prompt with the normaliza-
tion prompt, stopping only when no normalizations
are given. This ensures that it is confident that the
text was correctly changed, and that no new text
was introduced that needs to be changed. We uti-
lize o3-mini (OpenAI, 2025) to perform this task,
as it was shown to perform well during manual
evaluation.

Normalize Text Prompt

Your task is to edit a md version of
a published economics paper in markdown
format to remove specific types of content.
- Remove any information that explicitly
references the causal graph and its
contents, including the causal graph itself
- This is the only information you should
remove from the paper
- Only modify the text when it is necessary
to remove the causal graph’s information
- Only remove explicit references to the
causal graph’s elements, such as variable
names, feedback loops, arrow colors, a
variable explicitly being included, etc.
Do not remove other references and related
information to the causal graph, such as
discussing elements of the causal graph,
its relationships generally, and similar
information
- You can only edit the paper; do not attempt
to edit the causal graph
- The graph is supplied as a reference only
in <causal_graph> tags
- Do not attempt to edit anything before
</causal_graph>; this is not part of the
paper and will be rejected
You have access to a special tool called
’normalize’ that can replace text. This
is the only way you can modify the text.
Be careful to ensure that the text you
are replacing is only the causal graph’s
information, and that it exists verbatim
in the text.
The normalize tool takes three parameters:
1. start_string: The beginning of the text
to replace
2. end_string: The end of the text to
replace
3. replacement: The text to insert instead
You can call normalize multiple times to
make several targeted replacements in the
document. All three parameters are required
for each call.
- By default, normalize will locate the
*first* occurrence of the start_string. As
a workaround for when the same text appears
verbatim multiple times, use a slightly
longer start_string and include some of
the original text in your replacement to
maintain context.
- Do not "redact" the text; remove
references entirely rather than replacing
them with generic text.
- Both the start and end strings will be
included in the text that gets replaced.
Changes are applied in order, so ensure
that any string you replace is not used
in another replacement or an error will be
thrown.
Respond only with JSON in the following
format:

{"normalizations": [
{"start": "text to find (beginning)",
"end": "text to find (end)",

"replacement": "text to insert instead"},
...

]}



P Causal Graph Generation Prompt

Causal Graph Generation Prompt

You are an expert causal reasoner and
economist. Your task is to generate a
causal graph for the provided markdown text.
First, use extremely long chain-of-thought
reasoning in <think> tags. Then, provide
your final answer in a JSON code block,
strictly following the following format:

```json
{

"relationships": [
{"source": causal_variable0,
"sink": affected_variable0},
{"source": causal_variable1,
"sink": affected_variable1},
...

]
}
```

Your graph will contain exactly NUM_NODES
nodes. When answering, do not provide
any additional reasoning, commentary, or
other information - only provide the
JSON code block, with each dictionary
representing one relationship in the graph.

Q Standard Formatting Correction
Prompt

Formatting Correction Prompt

Your task is to correct the formatting of
a misformatted response, which is intended
to end with a causal graph in economics
that conforms to the proper JSON format.
You will convert their intended answer to
the proper JSON format, taking great care
to be as faithful to the ground truth as
possible. Do not attempt to modify the
substance of their answer in any form, even
if you think it may improve it’s quality
(including typos) - the task is to make the
minimal changes possible to correct the
formatting. The extent of the formatting
may be minor, or be so extensive as to
require writing the JSON from scratch.

Expected output format:

```json
{

"relationships": [
{"source": causal_variable0,
"sink": affected_variable0},
{"source": causal_variable1,
"sink": affected_variable1},
...

]
}
```

You will be provided the original,
misformatted answer. If it included
lengthy intermediate steps, you will be
given a snippet of them as context. Use
only the final answer, always prioritizing
the information provided closest to the
end of the response.

If there is no text in the answer that
resembles a causal graph, return an empty
list of relationships.

Begin your response with the start of
the JSON code block. Do not provide any
reasoning, thinking, commentary, etc. -
just the reformatted response. Don’t
overthink it.



R Name-Assisted Causal Graph
Generation

Causal Graph Generation with Node Names Prompt

You are an expert causal reasoner and
economist. Your task is to generate a
causal graph for the provided markdown text.
First, use extremely long chain-of-thought
reasoning in <think> tags. Then, provide
your final answer in a JSON code block,
strictly following the following format:

```json
{

"relationships": [
{"source": id_of_source_node,
"sink": id_of_sink_node},
{"source": id_of_source_node,
"sink": id_of_sink_node},
...

]
}
```

You will be provided with the source
markdown text and the name of each node
in the graph. Ensure that each node is
included at least once in the generated
causal graph. Do not use the node’s
name in the graph; instead, use the id
corresponding to the node. For the example
nodes below (not the same as the ones you
will be provided), whenever you want to
include the node named "demand" in your
graph, you would use the integer 2 rather
than the word demand.

```json
{

"nodes": [
{"name": "supply", "id": 1},
{"name": "demand", "id": 2},
...

]
}
```

When answering, do not provide any
additional reasoning, commentary, or
other information - only provide the
JSON code block, with each dictionary
representing one relationship in the graph.

Here are the nodes for your graph:

```json
NODE_JSON
```

S Name-Assisted Formatting Correction
Prompt

Name-Assisted Formatting Correction Prompt

Your task is to correct the formatting of
a misformatted response, which is intended
to end with a causal graph in economics
that conforms to the proper JSON format.
You will convert their intended answer to
the proper JSON format, taking great care
to be as faithful to the ground truth as
possible. Do not attempt to modify the
substance of their answer in any form, even
if you think it may improve it’s quality
(including typos) - the task is to make the
minimal changes possible to correct the
formatting. The extent of the formatting
may be minor, or be so extensive as to
require writing the JSON from scratch.

In the original creation step, they were
given the node names for the graph, each
with corresponding ids. When correcting
the graph, only ever use the integer ids
corresponding to the node name, regardless
of if the original used the names or
correctly used the ids.

Expected output format:

{
"relationships": [

{"source": id_of_source_node,
"sink": id_of_sink_node},
{"source": id_of_source_node,
"sink": id_of_sink_node},
...

]
}

You will be provided the original,
misformatted answer. If it included
lengthy intermediate steps, you will be
given a snippet of them as context. Use
only the final answer, always prioritizing
the information provided closest to the
end of the response. If it never comes
to an answer, do not attempt to solve it
yourself. Instead, simply return an empty
list of relationships.

Begin your response with the start of
the JSON code block. Do not provide any
reasoning, thinking, commentary, etc. –
just the reformatted response. Don’t
overthink it.

Here are the nodes for your graph:

```json
NODE_JSON
```



T LLM-as-a-Judge Prompt

LLM-as-a-Judge Prompt

You are an expert economist. Your task is
to act as an evaluator for a causal graph.
You are provided with the ground-truth
graph, the source text, and the LLM’s
response. You will also be told the type
of evaluation to perform; only evaluate
the response for that type of evaluation
by closely following the instructions.
Do not evaluate using any other type of
evaluation.

When evaluating, follow these guidelines:
1. Follow each direction carefully,
completely, and in-order
a. It is very important to be thorough
and not take shortcuts, even when it
seems tedious, redundant, or unnecessary.
Do this for each node or edge you are
evaluating; there is no time limit. Be
sure to fully to fully think through each
node or edge you are tasked with evaluating
fully before moving onto the next one.
i. It is helpful to quote supporting
evidence from the provided texts and
graphs before reasoning about their
relevance to the final evaluation for that
node or edge.
ii. While evaluating a node or edge, you
may examine several plausible counterparts
to judge presence, semantics, abstraction,
etc. (e.g., to see if it is broader or
narrower than any ground-truth items). Use
all relevant comparisons to inform your
decision, but output one—and only one—set
of labels for the item.
b. Only focus on the specific type of
evaluation you are asked to do. Regardless
of the accuracy (or lack thereof) in
other categories, if you are asked to
evaluate node precision, only evaluate
node precision, not recall or edges. These
are intended to be separate evaluations,
so do not conflate the two.
c. Not Applicable labels must be explicitly
selected when a category is skipped due to
prior labels
d. Be conservative when grading - When in
doubt between two labels, ere on the side
of being harsh.

Start by thinking step-by-step in
<think> tags. Then, output your answer
in a YAML code block, formatted exactly
as specified in the expected output format.

# Node Level Evaluation

## Node Precision
For each node in the LLM’s response,
evaluate against both ground truth sources:

1. Ground-Truth Graph Evaluation
- Explicitly identify and quote ALL
potentially corresponding nodes from
ground-truth graph

- Apply these labels where applicable:
Presence Labels (select one):
- PRESENCE_STRONG_MATCH: Core concept
matches a ground-truth node with only
minor, inconsequential differences
- PRESENCE_WEAK_MATCH: Core concept shares
meaning with a ground-truth node, even if
there are noticeable differences
- PRESENCE_NO_MATCH: There is no
ground-truth node that captures a
remotely similar core concept

Semantic Labels (select one):
- SEMANTIC_STRONG: Exactly or nearly
identical meaning with only subtle
distinctions
- SEMANTIC_MODERATE: Same core concept but
with meaningful differences in scope or
implication
- SEMANTIC_WEAK: Shares some semantic space
but with substantial differences
- SEMANTIC_NA: Not applicable

Abstraction Labels (select one):
- ABSTRACTION_BROADER: Represents a
more general concept that includes the
ground-truth node
- ABSTRACTION_ALIGNED: Represents
approximately the same scope and
specificity of the ground-truth node
- ABSTRACTION_NARROWER: Represents a more
specific subset of the ground-truth node
- ABSTRACTION_NA: Not applicable or the
concepts were so different as to make
abstraction comparison impossible

2. Ground-Truth Text Evaluation
- Explicitly quote ALL relevant supporting
text from source
- Apply these labels where applicable:
Evidence Labels (select one):
- PRESENCE_STRONG_MATCH: Core concept
appears in text with only minor,
inconsequential differences
- PRESENCE_WEAK_MATCH: Core concept shares
significant meaning with text but has
notable differences
- PRESENCE_NO_MATCH: No text segments
capture a similar core concept

Semantic Labels (select one):
- SEMANTIC_STRONG: Captures precisely what
is stated in text or represents meaning
with minimal interpretation
- SEMANTIC_MODERATE: Requires some
interpretation but maintains core meaning
- SEMANTIC_WEAK: Significant interpretation
needed; meaning partially preserved
- SEMANTIC_NA: Not applicable

Abstraction Labels (select one):
- ABSTRACTION_BROADER: Represents a more
general concept that includes text concepts
- ABSTRACTION_ALIGNED: Represents
approximately the same scope and
specificity as the text
- ABSTRACTION_NARROWER: Represents a more
specific subset of text concepts



- ABSTRACTION_NA: Not applicable or the
concepts were so different as to make
abstraction comparison impossible

## Node Level Recall
For each node in the ground-truth graph,
evaluate against the LLM’s response:

Response Evaluation
- Explicitly identify and quote ALL
potentially corresponding nodes from LLM’s
response
- Apply these labels where applicable:
Importance Labels (select one):
- IMPORTANCE_CORE: Ground-truth node
represents a fundamental concept central
to the causal structure
- IMPORTANCE_INTERMEDIATE: Ground-truth
node serves as a key connection between
central concepts
- IMPORTANCE_PERIPHERAL: Ground-truth
node provides supplementary or contextual
information

Presence Labels (select one):
- PRESENCE_STRONG_MATCH: Core concept
appears in response with only minor,
inconsequential differences
- PRESENCE_WEAK_MATCH: Core concept shares
significant meaning with a response node
but has notable differences
- PRESENCE_NO_MATCH: No response node
captures a similar core concept

Semantic Labels (select one):
- SEMANTIC_COMPLETE: Ground-truth concept
fully captured with high fidelity, whether
in single or multiple nodes
- SEMANTIC_PARTIAL: Core aspects captured
but with some meaning loss or missing
implications
- SEMANTIC_MINIMAL: Only basic or
surface-level aspects of the concept
captured
- SEMANTIC_NA: Not applicable

Abstraction Labels (select one):
- ABSTRACTION_BROADER: Represents a
more general concept that includes the
ground-truth node
- ABSTRACTION_ALIGNED: Represents
approximately the same scope and
specificity of the ground-truth node
- ABSTRACTION_NARROWER: Represents a more
specific subset of the ground-truth node
- ABSTRACTION_NA: Not applicable or the
concepts were so different as to make
abstraction comparison impossible

# Edge Level Evaluation

## Edge Precision
For each edge (causal relationship) in
the LLM’s response, evaluate against both
ground truth sources:

1. Ground-Truth Graph Evaluation
- Explicitly identify and quote ALL

potentially corresponding edges from
ground-truth graph
- Apply these labels where applicable:
Presence Labels (select one):
- PRESENCE_STRONG_MATCH: Edge connects
highly similar concepts as in ground-truth
- PRESENCE_WEAK_MATCH: Edge connects
somewhat similar concepts as in
ground-truth
- PRESENCE_NO_MATCH: No corresponding edge
exists in ground-truth

Directionality Labels:
- DIRECTION_CORRECT: Direction of causality
matches ground-truth
- DIRECTION_REVERSED: Direction of
causality is opposite of ground-truth
- DIRECTION_NA: Not applicable or the
concepts were so different as to make
direction comparison impossible

Abstraction Labels:
- ABSTRACTION_ALIGNED: Edge represents
similar scope of relationship as
ground-truth
- ABSTRACTION_BROADER: Edge is
substantially more general than
ground-truth
- ABSTRACTION_NARROWER: Edge is
substantially more specific than
ground-truth
- ABSTRACTION_NA: Not applicable or the
concepts were so different as to make
abstraction comparison impossible

2. Ground-Truth Text Evaluation
- Explicitly quote ALL relevant supporting
text that describes causal relationships
- Apply these labels where applicable:
Evidence Labels (select one):
- PRESENCE_GRAPH_ONLY: Causal relationship
present in ground-truth graph (always
select this if present)
- PRESENCE_EXPLICIT: Causal relationship
directly stated in text (only if not in
graph)
- PRESENCE_IMPLIED: Causal relationship
can be reasonably inferred from text (only
if not in graph)
- PRESENCE_NO_MATCH: No text supports this
causal relationship (only if not in graph)

Inference Labels (select one):
- INFERENCE_DIRECT: Relationship matches
text’s explicit causal claims
- INFERENCE_DERIVED: Relationship logically
follows from text
- INFERENCE_STRETCHED: Relationship
possible but weakly supported
- INFERENCE_NA: Not applicable or
relationship does not exist

Abstraction Labels (select one):
- ABSTRACTION_ALIGNED: Matches the
granularity of text’s causal claims
- ABSTRACTION_BROADER: Generalizes multiple
textual relationships
- ABSTRACTION_NARROWER: Specifies a subset



of text’s causal claims
- ABSTRACTION_NA: Not applicable or the
concepts were so different as to make
abstraction comparison impossible

## Edge Level Recall
For each causal relationship (edge) in the
ground-truth graph, evaluate against the
LLM’s response:

Response Evaluation
- Explicitly identify and quote ALL
potentially corresponding causal
relationships from LLM’s response
- Apply these labels where applicable:
Importance Labels (select one):
Importance is based on how important it
is to the ground-truth graph, regardless
of whether it is present or accurately
represented in the LLM’s response.

- IMPORTANCE_CENTRAL: A key causal
relationship that drives main effects
- IMPORTANCE_CONNECTING: Links major causal
chains together
- IMPORTANCE_AUXILIARY: Provides
supplementary causal context

Presence Labels (select one):
- PRESENCE_STRONG_MATCH: Core concept
appears in response with only minor,
inconsequential differences
- PRESENCE_WEAK_MATCH: Core concept shares
significant meaning with a response node
but has notable differences
- PRESENCE_NO_MATCH: No response node
captures a similar core concept

Directionality Labels (select one):
- DIRECTION_CORRECT: Causal relationship
captured with correct direction
- DIRECTION_REVERSED: Causal relationship
present but direction is reversed
- DIRECTION_UNCLEAR: Relationship present
but direction is ambiguous
- DIRECTION_MISSING: Relationship entirely
absent from response

Abstraction Labels (select one):
- ABSTRACTION_ALIGNED: One-to-one
relationship match at similar level
of detail
- ABSTRACTION_BROADER: Edge is
substantially more general than
ground-truth
- ABSTRACTION_NARROWER: Edge is
substantially more specific than
ground-truth
- ABSTRACTION_NA: Not applicable or the
concepts were so different as to make
abstraction comparison impossible

# Expected Output Format
The output should be in YAML format.
Only include the evaluation sections
that are being evaluated - omit other
sections entirely. For example, if only
evaluating node precision, only the

node_precision_evaluations section should
be present. However, within the required
evaluation sections, be sure to always
include the Not Applicable labels rather
than omitting them.

“‘yaml
# If evaluating node precision:
node_precision_evaluations:
- node_number: <integer>
graph_evaluation:
presence_label: <PRESENCE_LABEL>
semantic_label: <SEMANTIC_LABEL>
abstraction_label: <ABSTRACTION_LABEL>
text_evaluation:
presence_label: <PRESENCE_LABEL>
semantic_label: <SEMANTIC_LABEL>
abstraction_label: <ABSTRACTION_LABEL>

# If evaluating node recall:
node_recall_evaluations:
- node_number: <integer>
importance_label: <IMPORTANCE_LABEL>
presence_label: <PRESENCE_LABEL>
semantic_label: <SEMANTIC_LABEL>
abstraction_label: <ABSTRACTION_LABEL>

# If evaluating edge precision:
edge_precision_evaluations:
- edge_number: <integer>
graph_evaluation:
presence_label: <PRESENCE_LABEL>
directionality_label: <DIRECTION_LABEL>
abstraction_label: <ABSTRACTION_LABEL>
text_evaluation:
presence_label: <PRESENCE_LABEL>
inference_label: <INFERENCE_LABEL>
abstraction_label: <ABSTRACTION_LABEL>

# If evaluating edge recall:
edge_recall_evaluations:
- edge_number: <integer>
importance_label: <IMPORTANCE_LABEL>
presence_label: <PRESENCE_LABEL>
directionality_label: <DIRECTION_LABEL>

abstraction_label: <ABSTRACTION_LABEL>
“‘

U LLM-as-a-Judge Scoring Mechanics

The quantitative metrics derived from the LLM-as-
a-Judge’s YAML output are calculated as follows.
First, the judge’s qualitative labels for various eval-
uation criteria (e.g., PRESENCE_STRONG_MATCH,
SEMANTIC_MODERATE, IMPORTANCE_CORE) are
mapped to pre-defined numerical scores, ranging
from 0.0 (no match/irrelevant) to 1.0 (perfect
match/highly important). For multi-faceted
evaluations like node precision, which considers
presence, semantic similarity, and abstraction
level, a composite score for a single aspect (e.g.,
node precision against the ground-truth graph) is
computed by averaging the numerical scores of its



constituent labels.
Precision metrics (node precision, edge preci-

sion) for each item generated by the LLM are de-
termined by comparing it against both the ground-
truth graph and the source text. If the item is la-
beled as PRESENCE_NO_MATCH against both sources,
its score is 0.0. Otherwise, the higher of the two
composite scores (one from graph comparison, one
from text comparison) is taken as the item’s pre-
cision score. The overall precision for a category
(e.g., node precision) is then the arithmetic mean
of these individual item precision scores.

Recall metrics (node recall, edge recall) assess
how well the LLM’s output captures items from
the ground-truth graph. For each ground-truth
item, a composite correctness score is calculated
based on its presence and the fidelity of its rep-
resentation in the LLM’s output (considering fac-
tors like semantics, abstraction, and directional-
ity for edges). This correctness score is then
multiplied by a numerical importance weight as-
signed by the judge to that ground-truth item (e.g.,
IMPORTANCE_CORE receives a higher weight than
IMPORTANCE_AUXILIARY). The final recall score
for a category is a weighted average: the sum of
(correctness score × importance weight) for all
ground-truth items, divided by the sum of all possi-
ble importance weights. This ensures that correctly
recalling more important ground-truth items con-
tributes more significantly to the recall score.

Finally, F1 scores for nodes, edges, and overall
performance are calculated using the standard har-
monic mean: 2×(Precision×Recall)/(Precision+
Recall). Overall precision and recall are micro-
averaged, where the total weighted sum of correct
predictions is divided by the total number of pre-
dictions (for precision) or total ground-truth items
(for recall, considering importance weights), across
both nodes and edges.
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