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Abstract—We present DanceText, a training-free framework
for multilingual text editing in images, designed to support com-
plex geometric transformations and achieve seamless foreground-
background integration. While diffusion-based generative models
have shown promise in text-guided image synthesis, they of-
ten lack controllability and fail to preserve layout consistency
under non-trivial manipulations such as rotation, translation,
scaling, and warping. To address these limitations, Dance-
Text introduces a layered editing strategy that separates text
from the background, allowing geometric transformations to be
performed in a modular and controllable manner. A depth-
aware module is further proposed to align appearance and
perspective between the transformed text and the reconstructed
background, enhancing photorealism and spatial consistency.
Importantly, DanceText adopts a fully training-free design by
integrating pretrained modules, allowing flexible deployment
without task-specific fine-tuning. Extensive experiments on the
AnyWord-3M benchmark demonstrate that our method achieves
superior performance in visual quality, especially under large-
scale and complex transformation scenarios. Code is avaible at
https://github.com/YuZhenyuLindy/DanceText.git.

Index Terms—Multilingual Editing, Training-Free, Geometric
Transformation, Layered Editing, Depth-Aware Integration.

I. INTRODUCTION

With the rapid development of generative artificial intel-
ligence, diffusion models have emerged as a core paradigm
in multimodal research [1], [2], [3]. These models have
demonstrated impressive capabilities in tasks such as semantic-
guided image generation, vision-language alignment, and vi-
sual content enhancement [4], [5]. In this context, multilingual
text generation and fine-grained editing have become key
challenges for enhancing visual expressiveness and enabling
cross-lingual communication [6], [7], [8], [9]. For example,
AnyText [10] combines diffusion models with OCR modules
to support controllable multilingual text rendering and style
transfer, achieving notable performance in multilingual scene
text generation. However, existing methods primarily focus on
text content generation and appearance adaptation, lacking ex-
plicit modeling of the spatial and geometric attributes of text.
Consequently, they struggle to maintain layout consistency and
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structural coherence under complex transformations such as
rotation, translation, scaling, and warping.

From a modeling perspective, high-quality text editing re-
quires not only semantic consistency and visual fidelity, but
also fine-grained geometric controllability and spatial coher-
ence with the background. This process involves foreground-
background disentanglement, modular manipulation of ed-
itable text regions, and depth-consistent re-composition. Most
existing methods adopt end-to-end diffusion pipelines, where
the generation is globally noise-driven and lacks region-
specific controllability. Furthermore, the absence of modular
decomposition and explicit geometric reasoning severely limits
their adaptability and generalization in complex visual scenar-
ios [11], [12], [13].

To address these challenges, we propose DanceText, a
training-free framework for multilingual text editing and
transformation in images. Unlike end-to-end generative sys-
tems, DanceText is constructed entirely from pretrained mod-
ules in a modular fashion, leveraging OCR for text detection,
SAM for region segmentation, and LaMa-based diffusion in-
painting for background reconstruction. This design eliminates
the need for task-specific training or fine-tuning while pre-
serving high quality editing flexibility. At its core, DanceText
adopts a layered editing strategy that explicitly separates
text from background content, enabling controllable geomet-
ric transformations such as rotation, translation, scaling, and
warping. In addition, we propose a depth-aware module
to ensure photometric and geometric consistency between
the transformed text and the restored background. Extensive
experiments show that DanceText achieves superior visual
quality under complex transformation scenarios, demonstrat-
ing its effectiveness and generalizability in multilingual text
editing tasks.

The main contributions of this work are summarized as
follows:

• Layered text transformation. We propose a layered edit-
ing framework that explicitly decouples text from back-
ground regions, enabling controllable geometric transfor-
mations (e.g., rotation, translation, scaling, warping) in a
modular and controllable manner.

• Depth-aware module. We propose a depth-aware com-
position module that explicitly models photometric and
spatial coherence between the transformed text and the
reconstructed background, thereby enabling seamless in-
tegration and enhancing overall visual consistency.

• Training-free architecture. DanceText is entirely
training-free, leveraging pretrained modules without task-
specific fine-tuning, making the framework efficient, gen-
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Fig. 1. Overview of the DanceText framework. The pipeline consists of four stages: (1) OCR- and SAM-based foreground extraction; (2) Background
inpainting after text removal; (3) Geometric transformation of the text layer (rotation, translation, scaling, warping); (4) Depth-aware composition to ensure
realistic integration.

eralizable, and deployment-friendly across diverse editing
scenarios.

II. RELATED WORK

A. Image Generation and Editing with Diffusion Models

Diffusion models have emerged as a foundational paradigm
in generative artificial intelligence, achieving state-of-the-art
performance in text-to-image synthesis [4], [6]. Models such
as DALL-E 2 and Stable Diffusion leverage large-scale text-
image pretraining to generate semantically aligned and vi-
sually realistic content [14]. These approaches have spurred
substantial progress in vision-language modeling, inspiring
further research into fine-grained content control and guided
image manipulation [5], [15].

Recent efforts have extended diffusion models toward the
task of text generation and editing within images. Repre-
sentative methods include TextDiffuser [12], which employs
character-level segmentation to facilitate controllable text
synthesis, and GlyphControl [16], which introduces glyph-
conditioned diffusion processes to improve style and layout
fidelity. AnyText [10] further advances this line of research by
supporting multilingual text rendering through a combination
of OCR-guided positioning and diffusion-based generation.

While these approaches demonstrate impressive results in
static text generation, they remain limited in their capacity to
support spatial transformations or dynamic text rearrangement.
In particular, operations such as rotation, scaling, and reposi-
tioning are not natively supported by existing diffusion-based
pipelines, highlighting a gap in controllable and geometry-
aware text editing—a gap that our work aims to address.

B. Controllable Text Editing and Spatial Transformation

Precise control over text placement and transformation is
essential for diffusion-based scene text editing. Existing meth-
ods primarily support spatial specification during the initial
generation phase. For instance, TextDiffuser [12] leverages
segmentation masks to constrain text position, while Glyph-
Control [16] introduces explicit positional markers to enhance

localization and layout fidelity. However, these approaches
typically lack support for post-generation manipulation, offer-
ing limited controllability in adjusting existing text spatially.

InstructPix2Pix [11] enables region-based image editing via
natural language prompts, and has proven effective for general
appearance modifications. Nevertheless, it does not incorporate
dedicated mechanisms for geometry-aware text relocation or
layout adjustment, especially under non-rigid transformations.

Overall, current methods remain constrained in their capac-
ity to handle dynamic spatial reconfiguration of text elements,
particularly under geometric operations such as rotation, trans-
lation, scaling, or warping. Addressing these limitations re-
quires a controllable framework that decouples content ma-
nipulation from spatial control, and our proposed method fills
this gap.

C. Foreground-Background Disentanglement

Foreground-background separation has long been a fun-
damental strategy in image editing, particularly useful in
scenarios involving cluttered or semantically rich scenes. Tra-
ditional methods such as Content-Aware Fill [17] perform
patch-based feature matching to reconstruct occluded regions.
While effective for small-scale edits, these approaches often
fail in large or structurally complex areas, resulting in blurry
or inconsistent completions.

The emergence of deep generative inpainting models has
significantly improved reconstruction quality. DeepFill [18]
models long-range dependencies via contextual attention, and
EdgeConnect [19] introduces edge-guided priors for structure-
preserving synthesis. LaMa [20] further advances this line
of work by employing Fourier convolutions and multi-scale
feature learning to achieve high-quality inpainting on large
missing regions. However, most of these frameworks are
optimized for generic object removal and do not account for
the unique geometric and semantic characteristics of text.

To address this gap, we propose a task-specific disen-
tanglement pipeline that combines OCR-guided foreground
extraction with background inpainting. This layered design
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Fig. 2. Visualization of the DanceText pipeline. The process consists of the following stages: (1) Original input image, (2) Background extraction, (3)
Foreground text separation, (4) Tamper for text modifications, (5) Depth-word for text depth processing, (6) Depth-image for global depth refinement, (7)
Rotation, (8) Translation, (9) Scaling, and (10) Wrap.

enables precise separation of text from the background, al-
lowing flexible geometric transformations, while maintaining
global scene consistency.

III. METHOD

A. Overview

We present DanceText, a modular and training-free frame-
work for multilingual text editing in images (Figure 1). The
proposed design facilitates fine-grained control over geomet-
ric transformations while mitigating background interference,
thereby enabling seamless integration within complex visual
scenes. The overall workflow comprises the following stages:

Stage 1: Foreground Extraction. EasyOCR detects text
regions, SAM segments glyphs, and k-Means binarization
removes edge background noise to form text layers.

Stage 2: Background Restoration. The text-occluded re-
gions are removed and restored using the LaMa inpainting
model to recover a clean background.

Stage 3: Text Tampering and Transformation. The text
is edited based on prompts and undergoes user-controllable
geometric transformations to adjust its position and shape
according to user intent.

Stage 4: Depth-Aware Composition. Depth-guided mod-
ulation is performed to align appearance attributes, enabling
visually coherent integration of foreground and background
layers.

B. Foreground Extraction

The initial stage of DanceText aims to isolate text regions
as a structured foreground representation for subsequent trans-

formation. This module comprises three components: OCR-
guided localization, glyph-level segmentation, and k-Means-
based refinement.

Text detection and mask generation. Given an input image
I ∈ RH×W×3, the EasyOCR model [21] D is employed to
detect text regions and recognize their content, yielding a set
of tuples:

{(Bi, Ti)}Ni=1 = D(I), (1)

where each Bi = (xi, yi, wi, hi) denotes the bounding box of
the i-th text region, and Ti is the corresponding recognized
text. The set of bounding boxes {Bi} is further used to
construct an initial binary mask M , which marks the candidate
foreground areas for subsequent segmentation and refinement.

Glyph segmentation and clustering refinement. To ob-
tain a more precise delineation of text shapes, the Segment
Anything Model (SAM) [22] is applied to extract glyph-level
masks M̂ within the regions indicated by M . While SAM pro-
vides high-quality segmentation, it may occasionally include
non-text elements due to low contrast or background clutter.
To mitigate this, a clustering-based refinement is introduced.

Specifically, each segmented region is processed by ap-
plying k-Means clustering (k = 2) to RGB pixel values.
The cluster with the greater number of pixels is selected as
the foreground, while the smaller one is discarded as noise.
This filtering strategy helps eliminate background interference
along glyph boundaries.

Foreground layer construction. The refined mask M̂ is
applied to the input image to generate the final foreground
layer:
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Fig. 3. Comparison of foreground-background composition methods, including Linear, Gamma, Histogram matching, and Depth-aware.

Ifg = I ⊙ M̂, (2)

where ⊙ denotes element-wise multiplication. The resulting
Ifg contains only text glyphs, enabling decoupled transforma-
tion and reintegration in subsequent stages.

C. Background Restoration

Following foreground extraction, the original back-
ground—previously occluded by text—must be reconstructed
to enable realistic reintegration in subsequent stages. To this
end, we adopt LaMa [20], an inpainting model capable of
handling large masked regions while maintaining perceptual
coherence.

Given the input image I and the binary text mask M
obtained from the previous stage, the restored background Îbg
is generated by applying the LaMa inpainting:

Îbg = L(I,M), (3)

where L denotes the inpainting process. By leveraging
frequency-domain convolutions and dilated architectures,
LaMa synthesizes plausible textures and structures in occluded
regions, producing a clean, text-free background with minimal
perceptual artifacts.

D. Text Tampering and Transformation

After foreground-background separation, the extracted text
can be semantically tampered and spatially transformed to fit
target visual designs. This stage comprises two operations: text
tampering and geometric transformation.

Text tampering. We define text tampering as a prompt-
guided content modification process. Given the original text
content Ti from Stage 1 and a user-specified prompt Si, a
text editing model T (AnyText [10]) generates the modified
output:

T ′
i = T (Si, Ti), (4)

where T ′
i denotes the tampered version with revised semantics.

The updated text is rendered with font and style consistent with
the original image, preserving visual coherence.

Geometric transformation. To support user-driven spatial
adjustment, a series of geometric transformations are applied
to the foreground layer Ifg. The supported operations include:
Rotation alters the orientation to match the perceived scene
geometry; Translation repositions the text to a user-specified
location; Scaling adjusts the text size to achieve visual bal-
ance; Warping deforms the text shape to conform to curved or
irregular surfaces. These transformations enable fine-grained
and user-controllable adaptation.

E. Depth-Aware Composition

In the final stage of the pipeline, the geometrically trans-
formed text must be seamlessly integrated with the restored
background. A key challenge in this step lies in achieving
perceptual consistency.

Depth-Aware Adjustment. Directly overlaying the trans-
formed foreground onto the reconstructed background often re-
sults in perceptual inconsistencies, such as unnatural lighting,
poor shading continuity, and visual misalignment with scene
geometry. These issues arise because the inserted text lacks
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Fig. 4. Merits and limitations of DanceText, including its ability to edit occluded text, support multiple transformations, and preserve background consistency.
Note: The images are sourced from the AnyWord-3M dataset.

proper adaptation to the underlying depth and illumination
context of the scene.

To mitigate this, we propose a depth-aware adjustment
module that modulates the foreground appearance based on
estimated depth information from the background. Specifi-
cally, we first estimate a depth map D ∈ RH×W from the
inpainted background Îbg (Stage 2). We then generate an initial
depth map Dfg for the transformed foreground based on its
placement. The goal is to refine Dfg so that it aligns with the
surrounding background depth at the composition boundary.

Let ∆D = D−Dfg denote the pixel-wise depth difference.
We define an adjustment function F that modifies the fore-
ground appearance according to ∆D, improving perceptual
coherence:

I ′fg(x, y) = α(∆D(x, y)) · Ifg(x, y) + β(∆D(x, y)), (5)

where the scaling functions are defined as:

α(∆D) = 1 + λ1 ·∆D, β(∆D) = λ2 ·∆D. (6)

Here, λ1 and λ2 are contrast and brightness adjustment
factors, respectively, and control the degree of modulation
based on the depth misalignment. In our implementation, we
empirically set λ1 = 0.5 and λ2 = 0.3; further sensitivity
analysis is provided in Appendix.

This depth-guided refinement effectively integrates the
transformed foreground into the spatial and photometric con-
text of the background, thereby reducing visual artifacts and
improving realism under complex scene geometry and light-
ing.

Final Composition. After depth-aware refinement, the ad-
justed foreground I ′fg is integrated with the reconstructed
background Îbg using a simple per-pixel composition function
C:

Î(x, y) = C(Îbg(x, y), I
′
fg(x, y),M(x, y))

=

{
I ′fg(x, y), if M(x, y) = 1

Îbg(x, y), otherwise

(7)

where M ∈ {0, 1}H×W is the binary text mask. The function
C directly replaces the masked region with the adjusted fore-
ground while preserving the background elsewhere. Though
simple, this strategy benefits greatly from prior depth-aware
adjustment, which ensures local consistency in illumination
and geometry.

Algorithm 1 DanceText Framework
Require: Input image I ∈ RH×W×3, prompt set {Si}Ni=1

Ensure: Final output image Î

# Stage 1: Foreground Extraction
1: {(Bi, Ti)}Ni=1 ← D(I) // OCR-based text detection and

recognition
2: M ← GENERATEMASK({Bi}) // Initial mask from

bounding boxes
3: M̂ ← SSAM(I,M) // Glyph segmentation via SAM
4: M̂ ← KMEANSFILTER(M̂) // Cluster filtering to

suppress background noise
5: Ifg ← I ⊙ M̂ // Extract foreground layer

# Stage 2: Background Restoration
6: Îbg ← L(I,M) // Inpaint background via LaMa

# Stage 3: Text Tampering and Transformation
7: for i = 1 to N do
8: T ′

i ← T (Si, Ti) // Edit text using prompt-guided
model

9: B′
i ← Tgeo(Bi, paramsi) // Apply user-controlled

geometric transformation
10: end for

# Stage 4: Depth-Aware Composition
11: Dbg ← ESTIMATEDEPTH(Îbg) // Estimate depth from

inpainted background
12: Dfg ← ESTIMATEDEPTH(Ifg) // Estimate depth of

transformed foreground
13: ∆D ← Dbg −Dfg // Compute spatial depth mismatch
14: I ′fg ← F(Ifg,∆D) // Adjust brightness and contrast
15: Î ← C(Îbg, I

′
fg, M̂) // Final per-pixel composition

16: return Î

IV. EXPERIMENT

A. Dataset Description

We use the OCR subset of the AnyWord-3M [10] dataset for
experiments. This dataset is constructed from various publicly
available image resources and encompasses a diverse range
of multilingual text scenarios. The primary sources of images
include LAION-400M [23] and Wukong [24]. Additionally,
it integrates several benchmark datasets specifically designed



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

Fig. 5. Pixel intensity histogram comparison of Linear, Gamma, Histogram matching, and Depth-aware adjustment methods.

for OCR recognition, such as COCO-Text [25], RCTW [26],
RRC-LSVT [27], MLT [28], and ReCTS [29].

B. Experimental Settings

All experiments were conducted on an NVIDIA GeForce
RTX 4090 GPU with 24GB of memory. Since DanceText does
not require additional training, we ensured reproducibility by
running all methods under the same hardware environment and
software dependencies. For comparison, we selected models
such as SAM, LaMa, and AnyText-v1.1, strictly using their
officially released default parameters to ensure fairness in the
evaluation.

C. Evaluation Metrics

Text editing quality. Sentence Accuracy (SA) [10] mea-
sures whether the OCR-recognized text matches the target text
exactly, assessing the precision of text editing. Normalized
Edit Distance (NED) [10] computes the similarity between the
generated and target text; lower NED values indicate better
editing performance. Frechet Inception Distance (FID) [30]
evaluates the visual style difference between the generated and
real images; a lower FID indicates higher visual consistency.
During training, we use PP-OCRv3 [31] for feature extraction.
To ensure fairness in evaluation, we adopt DuGuangOCR [32]
as an independent OCR model for testing.

Depth-Aware module. Bhattacharyya Coefficient (BC) [33]
& Correlation (Corr) [34] assess the consistency of depth
features before and after text relocation. Higher values indicate
stable visual depth preservation after text movement. Chi-
Square Distance (CS) [35] & Histogram Intersection (Inter)
[36] measure the impact of text relocation on depth informa-
tion, ensuring smooth integration of the edited text with the
background.

D. Comparison

Comparison of generative methods. We compare multi-
ple generative approaches, including TextDiffuser, AnyText,
Stable Diffusion V1.5/2.1/3.0/3.5, and DALL-E. As shown in
Figure A1 and A2, these models exhibit varying text rendering
quality, visual coherence, and adaptability across different
prompts. However, despite these variations, the choice of
generative model does not significantly affect the effectiveness
of our subsequent text editing and transformation steps. This
suggests that DanceText is robust to different input images,

ensuring flexible and high-quality text manipulation regardless
of the source image generation method.

Comparison of depth estimation methods. Depth esti-
mation plays a crucial role in ensuring natural foreground-
background blending during text transformation. We compare
multiple depth estimation models, including Marigold [37],
Geowizard [38], and Depth Anything V2 (DAv2) [39]. As seen
in Figure A3, DAv2 produces the most stable and consistent
depth maps, which are essential for our depth-aware fusion
process. The smoothness of DAv2’s depth predictions helps
maintain visual consistency when applying transformations
like rotation, translation, resizing, and warping. Based on this
evaluation, we selected DAv2 as the final depth estimation
method in DanceText, enhancing robustness across diverse
scenarios.

Comparison of different text transformations. Figure 2
illustrates the results of applying different transformation tech-
niques, including rotation, translation, resizing, and warping.
Among these, warping provides the highest flexibility, allow-
ing text to conform to complex surfaces and non-linear dis-
tortions. However, wrap-based transformations can introduce
artifacts if not properly blended with the background. To ad-
dress this, DanceText incorporates a depth-aware module that
adjusts brightness and contrast based on local depth variations,
ensuring seamless text-background integration. This enhance-
ment minimizes visual artifacts and significantly improves the
realism of the transformed text.

Comparison of different editing models. Table I sum-
marizes the performance of DanceText and several state-of-
the-art text editing baselines on the AnyWord-3M benchmark.
In English tasks, DanceText achieves a SA of 0.7011 and an
NED of 0.8702, ranking second only to AnyText-v1.1 (SA =
0.7239, NED = 0.876), while outperforming all other methods.
Notably, it achieves a lower FID (33.91) than AnyText-v1.0
(35.87), suggesting better visual realism.

In Chinese tasks, DanceText achieves an NED of 0.8165 and
an FID of 35.15, again placing it among the top three methods.
Although AnyText-v1.1 achieves the best performance in most
metrics, it is fine-tuned on the full benchmark, while Dance-
Text operates in a training-free fashion with no additional
tuning. This highlights its competitive generalization ability.

Moreover, unlike methods such as AnyText that primar-
ily support static or localized editing, DanceText enables
complex geometric transformations while maintaining robust
text fidelity and perceptual quality. These results demonstrate
the effectiveness of our layered architecture and depth-aware
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composition in handling transformations with minimal degra-
dation.

TABLE I
COMPARISON ON ENGLISH AND CHINESE TEXT EDITING TASKS. ALL

BASELINE RESULTS ARE REPORTED FROM THE ANYWORD-3M
BENCHMARK. GLYPHCONTROL IS FINE-TUNED ON THE TEXTCAPS-5K

DATASET.

Method English Chinese
SA↑ NED↑ FID↓ SA↑ NED↑ FID↓

ControlNet 0.5837 0.8015 45.41 0.362 0.6227 41.86
TextDiffuser 0.5921 0.7951 41.31 0.0605 0.1262 53.37

GlyphControl 0.5262 0.7529 43.1 0.0454 0.1017 49.51
AnyText-v1.0 0.6588 0.8568 35.87 0.6634 0.8264 28.46
AnyText-v1.1 0.7239 0.876 33.54 0.6923 0.8396 31.58

DanceText 0.7011 0.8702 33.91 0.6428 0.8165 35.15

TABLE II
ABLATION STUDY ON THE DEPTH-AWARE MODULE (D) FOR

TRANSFORMATIONS IN DanceText. EACH TRANSFORMATION IS
EVALUATED WITH AND WITHOUT DEPTH-AWARE ADJUSTMENT.

Transformation D English Chinese
SA↑ NED↑ FID↓ SA↑ NED↑ FID↓

Rotation × 0.6934 0.8655 34.81 0.6426 0.8135 35.42
Translation × 0.7008 0.8679 34.87 0.6386 0.8146 35.43

Resizing × 0.6997 0.8638 33.52 0.6465 0.8209 35.12
Wrap × 0.6893 0.8664 35.85 0.6334 0.8125 36.33

Rotation ✓ 0.7010 0.8717 33.61 0.6477 0.8160 35.14
Translation ✓ 0.7075 0.8731 32.41 0.6539 0.8229 34.87

Resizing ✓ 0.7022 0.8719 32.45 0.6482 0.8224 34.91
Wrap ✓ 0.7008 0.8698 34.17 0.6362 0.8147 36.08

TABLE III
ABLATION STUDY ON THE IMPACT OF THE DEPTH-AWARE MODULE.

Method BC↑ CS↓ Corr↑ Inter↑

Linear 0.7882 63.2225 0.0388 0.3965
Gamma 0.4205 15.2911 0.9649 1.5315

Histogram 0.8465 64.5014 0.0141 0.3329
Depth-aware 0.2546 0.7881 0.9915 1.8251

E. Ablation Study

Depth-aware adjustment on transformations. We evalu-
ate four types of geometric transformations—rotation, trans-
lation, scaling, and warping—under two configurations: with
and without the depth-aware adjustment module (Table II).
The depth-aware module consistently improves all evaluation
metrics (SA, NED, and FID) across both English and Chinese
text. For instance, in the translation scenario, the FID improves
from 34.87 to 32.41 (English) and from 35.43 to 34.87 (Chi-
nese), while NED increases from 0.8679 to 0.8731 (English),
demonstrating more faithful text preservation and enhanced
realism. Notably, the benefits of depth-aware adjustment are
more pronounced in complex transformations such as warping,
which tend to disrupt photometric consistency without such
correction.

Composition strategy on visual integration. We compare
four foreground-background composition strategies: Linear,
Gamma, Histogram matching, and our proposed Depth-aware
method (Figure 3). Traditional methods often result in visual

artifacts—e.g., over-saturation in linear scaling or hue shifts in
histogram matching. In contrast, the depth-aware composition
achieves smoother integration, maintaining local illumination
consistency and reducing boundary discontinuities. These find-
ings suggest that depth information plays a critical role in
aligning text with complex visual scenes, especially under
varying lighting or curved surfaces.

Brightness and contrast adjustment methods. To further
assess the effectiveness of our depth-aware adjustment, we
conduct a pixel-wise histogram similarity analysis against the
original background distribution. As shown in Figure 5 and
Table III, the depth-aware method achieves the highest corre-
lation (0.9915) and intersection (1.8251), while also attaining
the lowest Bhattacharyya coefficient (0.2546) and Chi-Square
distance (0.7881). These results quantitatively confirm that
our method preserves global tonal distribution better than
baseline techniques, validating its perceptual superiority in
text-background fusion.

V. MERITS AND LIMITATIONS

A. Merits

(1) Support for occluded text editing (Figure 4). Unlike
traditional text editing methods, DanceText effectively handles
occluded text regions, enabling natural modifications without
introducing noticeable artifacts. By leveraging foreground-
background separation and the depth-aware module, the sys-
tem maintains high visual consistency even in complex scenes.
(2) Support for repeated edits without affecting the back-
ground. Due to the layered editing strategy, DanceText allows
multiple modifications to the same region without progres-
sively degrading the background quality. This ensures that
iterative edits retain high visual fidelity and prevent unwanted
artifacts from accumulating. Further constraints can be easily
added in our pipeline to adhere compliance with the best
practices of responsible generative artificial intelligence [40].

B. Limitations

Font and color consistency needs improvement. While
DanceText effectively relocates and modifies text, slight in-
consistencies in font style or color may appear in some cases,
especially when blending with highly complex backgrounds.
Future work could explore adaptive font rendering techniques
to further enhance consistency.

VI. CONCLUSION

We present DanceText, a novel multilingual text editing
framework that enables high-quality transformation, flexible
editing, and seamless foreground-background integration. By
adopting a layered editing strategy, DanceText decouples text
from background content, supporting user-controllable geo-
metric transformations; including translation, rotation, scal-
ing, and warping—while preserving spatial and photometric
consistency. The framework integrates OCR and SAM for
foreground extraction, LaMa-based inpainting for background
restoration, and a depth-aware adjustment module for contrast
and brightness alignment. Extensive experiments demonstrate
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that DanceText achieves competitive visual quality and text
recognition accuracy, particularly under large-scale and com-
plex transformations. The proposed framework is highly appli-
cable to real-world multimedia scenarios and can be extended
to more complex transformations and animations.

APPENDIX

The appendix can be downloaded from here.
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