
ECE 551
Project Spec

Fall ’12

 High Speed Calibratable Angle

Resolver
(High Speed CAR)

2

Grading Criteria: (Project is 30% of final grade)

 Project Grading Criteria:
• Quantitative Element 25%

(yes this could result in extra credit)

• Project Demo (65%)
Code Review (12.5%)

Testbench Method/Completeness (15%)

Synthesis Script review (10%)

 Post-synthesis Test run results (12.5%)

 Results when placed in Eric Testbench (15%)

sizedAreaYourSynthe

ojectAreaEric
veQuantitati

Pr_

• Project Report 10%
Expected to be around 5-8 pages (don’t go crazy, I don’t want to grade a really

long report)

 Show partitioning of digital core (block diagram, few words)

 Report on datapath implementation (algorithm, support HW needed in datapath)

 Report on each team members contributions

 Section on lessons learned (focus on the hard leaned lessons…the heartache)

Note: The design has to be functionally
correct for this to apply

3

Project Due Date

 Project Demos will be held in B555:

• Date 12/12/12 from 1:00PM till evening.

• Other Date 12/14/12 from 1:00PM till evening.

 Project Demo Involves:
Code Review

 Testbench Method/Completeness

Synthesis Script & Results review

 Post-synthesis Test run results

 Results when placed in Eric testbench

 Hand in of short report

Chip Block Diagram

4

Digital Core
EEPROM

VPP Chrg Pmp

CLK

RST

MOSI

MISO

CAR = Calibratable Angle Resolver

Dual
12-bit
DAC

+

-

A2D Analog

+

-

12

12

A
2

D
 D

ig
it

a
l

16
16

Sin(a)

Cos(a)

SS_n

SCLK

SPI Interface

Description: The CAR chip is a high speed, high precision angle resolver. It has a 2-chanel 12-
bit A2D converter to sample a sine and cosine signal from an angle sensor. The sine channel
produces and output that is A*sin(a)+B, and the cosine channel produces a signal that is
C*cos(a)+D. The B and D terms represent undesired offsets that has to be cancelled through
calibration. A and C represent unknown scaling terms that also need normalization through
calibration. Calibration coefficients are stored in EEPROM. After each channel is digitally corrected
for offset and gain the angle a is calculated by the digital core, and available on the SPI interface.

RDY

Calibration…what needs to be performed

5

CorrectedSin = (SinSAR+OffsetSin)*ScaleSin
CorrectedCos = (CosSAR+OffsetCos)*ScaleCos

Raw Sin/Cos signals into A2D Need to correct for Gain & Offset errors

Perform correction in
digital domain using
scaling and offset
coefficients stored in
EEPROM

EEPROM

Address:

Coefficient:

0 OffsetSin

1 ScaleSin

2 OffsetCos

3 ScaleCos

Calculating a

6

)(

)(

a

a
a

osCorrectedC

inCorrectedS
ArcTan

However this only gives an answer in the
Range of –p/2 to p/2

We have to correct for the other quadrants
(when CorrectedCos(a) is negative)

How do you compute ArcTan?

Are you really going to implement a divide?

Remember HW1. Look at HW Solution.

CAR in a System

7

SIN

COS

CLK

RST

CAR

SS_n

MISO
SPI

An angle resolver could be used in multiple different systems. It could be part of a VFD drive system for
an AC motor. It could be part of a power steering angular sensor. It could be part of a antenna sweep
mechanism for an AWACs plane. It could be part of some high speed industrial robotics.

In most any system the output of our chip would be processed by an embedded micro-controller which
would in turn control the process of interest. For the project we will take the output to be a SPI bus. It
could however be any number of serial protocols. (I2C, UART, SENT, ModBus, …)

Cosine based angular encoders are most commonly constructed from optical means or magnetic means.
Light shining through slots on a disk to an optical sensor, or rotating magnetic field penetrating a hall
effect sensor.

In the project area of the website take a look at the TLE5012 spec from Infineon. We are essentially
making a slightly simplified version of this chip. (This spec is self contained…look only if interested)

MOSI

SCLK

Cosine angular encoder

RDY

8

What is synthesized DUT vs modeled?

The blocks outlined in red above are pure digital blocks, and will be coded with the intent of
being synthesized. All other blocks will be modeled in Verilog for fullchip simulation purposes.

For the class project Verilog models of (EEPROM, A2D Analog) will be provided.

You Must have a block called car_dig.v which is top level of what will be the synthesized DUT.

Digital Core
EEPROM

VPP Chrg Pmp

CLK

RST

MOSI

MISO

CAR = Calibratable Angle Resolver

Dual
12-bit
DAC

+

-

A2D Analog

+

-

12

12

A
2

D
 D

ig
it

a
l

16
16

Sin(a)

Cos(a)

SS_n

SCLK

SPI Interface

RDY

RDY

9

Digital Core Block Diagram

It is recommended
to partition the digital
core into 2 blocks. A
datapath block will
perform the computation
and data movement. A
control block
(implemented as a FSM)
will orchestrate all the
data movement, and
interface to the SPI bus,
A2D, and EEPROM.

Signal interface of the
digital core will be
specified in the following
slides. Signal interface
between the datapath
and the main state
machine are left to the
project team.

saturate

A2D
Intf

Working
Registers

Constants

EEPROM SPI

ALU

P_reg

Main SM

Shift-25

src1 src0

dst

Datapath
Digital Core

0’s

R
D

Y

10

Digital Core Interface

Signal Name: Dir. Description:

cmd_rdy In Signal from “modbus” interface is ready

cmd_rcvd[15:0] In 16-bit data from “modbus” interface.

wrt_SPI Out Signal to SPI interface asserted when digital core writes a new output to SPI.

dst[11:0] Out Output data bus from core. Used for writes to the EEPROM, wraps internally to

working registers. Lower 12-bits used for 16-bit writes to modbus interface

eep_addr[1:0] Out Address to EEPROM

eep_rd_data[11:0] In Data from the EEPROM (returned on a read)

eep_cs_n Out Chip select (enable) to EEPROM block (active low)

eep_r_w_n Out Read/write control to EEPROM (active low for write)

chrg_pmp_en Out Signal enables on chip VPP charge pump (maintain for 3ms)

strt_cnv Out Signal to A2D interface instructs it to start a conversion on both channels

cnv_cmplt In Signal from A2D interface. Indicates both channels are ready

sinSAR In Angle sin value(result of A2D conversion)(to 12-bit DAC of A2D analog).

cosSAR In Angle cos value (result of A2D conversion)(to 12-bit DAC of A2D analog).

clk In Clock input to core (471.85MHz)

rst_n In Reset signal (active low)

11

Reset Over

No

Wait Conv Cmplt

CmdFromMstr? Issue strt_cnv

inCmds?

No

Yes

CorrSin = SinSAR+EEP(0)
CorrSin = CorrSin*EEP(1)

CorrCos = CosSAR+EEP(2)
CorrCos = CorrSin*EEP(3)

Issue strt_cnv

Perform ArcTan math
and write results to SPI

register
Assert RDY

CmdMd Command?

Wait 3ms

Set inCmds
flop, write

posAck
No

Yes

Decode, Execute, &
Write command results

to SPI register.
Assert RDY

Digital Core Main Flow

yellow boxes are a macro
functions shown in more
detail in later slides.

Decode & Execute Cmd

12

write EEPROM

read EEPROM

No

Yes

Yes

No

Read Corr Sin

No

Yes
Back to Main

Loop

unlock EEPROM Set unlock flop
Write 0x0A5A
to SPI register

Yes

Write if unlocked
Assert CP for 3ms

Write 0x0A5A
to SPI register

Read specified
address

Write data
to SPI register

Write CorrSin
to SPI register

Read Corr Cos

Enter CM

Write CorrSin
to SPI register

Write CorrSin
to SPI register

Yes

Set inCmds flop

No

No

No

Set RDY signal

Enter

13

Command Set

Bits[15:14] Bits[13:12] Bits[11:0] Description:

2’b01 2’b00 12’hxxx Read corrected Sin value

2’b01 2’b01 12’hxxx Read corrected Cos value.

2’b01 2’b10 12’hxxx Enter command mode. This sets the inCmds flop

2’b01 2’b11 12’hxxx Unlock EEPROM. This upper nibble [15:12] must be

sent prior to any EEPROM write. It is used as an

interlock to reduce probability of inadvertent writes.

2’b10 2’bYY 12’hxxx Read EEPROM. The 2-bits (2’bYY) specify which

location of EEPROM to read. Data is a don’t care.

2’b11 2’bYY 12’hDATA Write EEPROM. The location to write is specified by

2’bYY. The data to write is in the lower 12-bits.

Command Encoding: All commands are 16-bits. Bits[15:12] contain the command endoding.
Bits[13:12] contain the address if the command is EEPROM related. The lower 12-bits
(Bits[11:0]) contain data in the case of EEPROM write, and are don’t care otherwise.

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

14

Math
 The A2D values SinSAR and CosSAR are unsigned values that range from 0 to

0xFFF. They need to be made into signed numbers in the range from 0x800 to

0x7FF. This is done by simply inverting the MSB.

 Offset correction is performed on the rawA2D readings. EEPROM locations 0 and

2 contain signed offsets for SinSAR and CosSAR respectively.

 Next each of the offset corrected A2D readings have a gain term. The offset

corrected SinSAR & CosSAR reading are multiplied by an attenuation term stored

in EEPROM locations 1 and 3 respectively.

 Now it is time to compute the arctangent of (Sin/Cos) to derive a. What is your

method? Have you considered CORDIC?

CORDIC Algorithm

15

Cos(a)

Sin(a)

Lets take example of a=30
Iter: Rotation

Amount

Resulting

Angle

Sum of

Rotations

1 -45 -15 -45

2 +22.5 7.5 -22.5

3 -11.25 -3.75 -33.75

4 +5.625 1.875 -28.125

5 -2.8125 -0.9375 -30.9375

If one had a convenient way of rotating a vector by binary weighted amounts starting
at 45°. For instances ±45°,±22.5°,±11.25°,±5.625°, … Then any vector in quadrants
I or IV (vectors with cos(a) >0) could be rotated to zero (so resulting vector lies
along the x-axis). If one keeps track of the sum of all the rotations necessary to get
the vector to zero then they know what the original angle a was.

CORDIC is an algorithm that can do such vector rotations, and with very simple
digital blocks required. Adder, shifter, small lookup table, …

a

Implementing CORDIC (to 12-bit precision)

Need a lookup table with 12 entries of 12-bit vectors

16

Indx: Value: Hex:

0 Arctan(1) 0x200

1 Arctan(1/2) 0x12E

2 Arctan(1/4) 0x0A0

3 Arctan(1/8) 0x051

4 Arctan(1/16) 0x029

5 Arctan(1/32) 0x014

6 Arctan(1/64) 0x00A

7 Arctan(1/128) 0x005

8 Arctan(1/256) 0x003

9 Arctan(1/512) 0x001

10 Arctan(1/1024) 0x001

11 Arctan(1/2048) 0x000

Normally we think of angles in radians, and having a

range of [-p,p). However, real digital designers do

not work with real numbers, they scale things to be
integers.

We will define our own results. We will scale our
number system to suite our needs. If we are
representing an angle in the range [-p,p)with a 12-bit

number then –p 0x800, and +p = 0x7FF.

Using that scaling the hex values for our lookup table
are as shown in the table to the right.

17

Implementing CORDIC (to 12-bit precision)

CORDIC works well when the initial vector is in
quadrant I or IV, but what about when cos(a) is
negative?

Rotate the angle by p or -p by assigning cos(a) = -
cos(a) and sin(a) = -sin(a).

If sin(a) was positive you will need to start your

angle accumulator (used to sum all rotatons) at p.

If sin(a) was negative you will need to start your

angle accumulator (used to sum all rotatons) at -p.

Rotate initial vector by +p, so we start
CORDIC iterations with a vector in
Quadrant IV

Rotate initial vector by -p, so we start
CORDIC iterations with a vector in
Quadrant I

if (cos(a)<0) {

 if (sin(a)<0) { // quad III case

 angle_accum = 0x800; // negative p

 }

 else { // quad II case

 angle_accum = 0x7FF; // positive p

 }

 cos(a) = -cos(a);

 sin(a) = -sin(a);

}

else { // Quad I & IV case

 angle_accum = 0; // no initial rotation

}

18

Implementing CORDIC (the iterations)

for (iter=0; iter<12; iter++) {

 if (sin(a)>0) { // clockwise rotation needed

 angle_accum = angle_accum + table(iter);

 nxt_cos(a) = cos(a) + (sin(a)>>>iter);

 nxt_sin(a) = sin(a) – (cos(a)>>>iter);

}

 else { // counter-clockwise rotation

 angle_accum = angle_accum - table(iter);

 nxt_cos(a) = cos(a) - (sin(a)>>>iter);

 nxt_sin(a) = sin(a) + (cos(a)>>>iter);

 }

}

Of course loop is not done as a “for” loop in verilog. It is done
as a state machine that repeats its operations 12 times, and
utilizes a 4-bit counter to know when it has done it 12 times. Do
we have to iterate 12 times? Look at the last entry in the table.

19

Normal Operation Loop

Conv_cmplt?

P_reg = SinSAR+EEP(0)

Yes

No

P_reg = P_reg * EEP(1)
CorrSin = MultRes

inCmds?

Compute ArcTan

Write to SPI Register
P_reg = CosSAR + EEP(2)

(issue strt_conv here)

P_reg = P_reg * EEP(3)
CorrCos = MultRes

Execute
Cmd &

Write SPI

No

Yes

What is SPI?

20

 Simple full duplex serial interface (Motorola long long ago)

• Serial Peripheral Interconnect (very popular physical interface)

• 4-wires

MOSI (Master Out Slave In) (CAR is a slave, your testbench will be a master)

MISO (Master In Slave Out) (CAR will drive this) (but only when SS_n is low)

SCLK (Serial Clock)

SS_n (Active low Slave Select) (If it is low then CAR is being selected)

• There are many different variants

MISO changes on clock low vs clock high

SCLK normally high vs normally low

Widths of packets can vary from application to applications

Really is a very loose standard (barely a standard at all)

• We will stick to the most commonly used variant

MISO changes on SCLK low

SCLK normally low

16-bit packets (both directions will be 16-bit packets)

SPI Packets

21

…
SCLK

SS_n

MOSI

…

…

…

MISO
…

…

HiZ XX

C15 C14 C13 CD0 CD1 CD2 XX

HiZ D15 D14 D13 D0 D1 D2

A SPI packet inherently involves a send and receive (full duplex). The full duplex packet is always
initiated by the master. Master controls SCLK, SS_n, and MOSI. The slave drives MISO if it is
selected. If the slave is not selected it should leave MISO high impedance.

MOSI will change on the falling edge of SCLK with the understanding that the slave will flop it on
the falling edge of SCLK.

MISO will change on the falling edge of SCLK with the understanding that the master will flop it on
the rising or falling edge of SCLK.

22

General Flow (coming out of reset)

Out of reset the core will wait for 3ms for a SPI command to come in. If a Enter
Command Mode (EnterCM) command comes in then the core will enter a functional loop
that is used for sensor calibration. If no EnterCM command comes in then the core will
enter its normal operation loop (as shown here). In this loop it performs A2D
measurements on the Sin & Cos inputs, corrects them for offset/gain errors, and
computes the arctan to get the sensor angle a. This value a is then written to the SPI
output register. The whole loop then repeats indefinitely.

rst_n

Core Activity Correction math

Check if device is in
CmdMode, if so is there a

new command?

Offset&Gain
on SAR Sin/Cos

issue
strt_conv &
wait for CC

3ms wait for CM

Issue strt_cnv as
soon as done with

raw A2D data

Compute the
angle a, and
write to SPI

register

ArcTan Correction math ArcTan

Normal op calcs continue if
not in command mode

23

Flow When in Command Mode

When in command mode the digital core still calculates offset and scaling correction on
the sine and cosine channels. It then checks for an incoming command from the SPI
bus. If a command has come in it will decode and execute that command and write a
response to the SPI output register. The first command it sees in this example is an
unlock EEPROM command. It sets the unlock bit, writes a positive acknowledge
(16’h0A5A) to the SPI bus. The core then returns for another round of sine/cosine
measurement and correction. When completed it sees the next command is a write to
EEPROM (the output on MISO during this time is a posAck to the previous UnlckEEP
command). Since the unlock bit is set from the previous command it writes EEPROM, the
core then writes a positive acknowledge to SPI and returns to the sine/cosine correction.

Core Activity Sin & Cos Corr

MOSI
Activity

UnlckEEP

Check for Command
from SPI

Set unlock flop,
write PosAck

WrtEEP

Sin & Cos Corr

Check for Command
from SPI

Write EEP,
write PosAck

RdEEP

MISO
Activity

PosAck PosAck PosAck

Read EEP,
write to SPI

Sin & Cos Corr Sin & Cos Corr

???

EEP_res

Check for Command
from SPI

A2D Interface

24

• A2D_Analog verilog will be provided

• You create A2D_Digital

Dual
12-bit
DAC

+

-

A2D Analog

+

-

12

12

V_Sin

V_Cos
S
A
R
_
v

S
A
R
_
i

clk s
ta

te

clk

clk

R

rst_n

cnv_cmplt

c
lr

_
c
c

s
e
t_

c
c

R

rst_n

strt_cnv

A2D Digital

g
t_

s
in

gt_cos

s
m

p
l

SinSAR

CosSAR

signal direction

gt_sin in

gt_cos in

strt_cnv in

signal direction

SinSAR[11:0] out

CosSAR[11:0] out

smpl out

cnv_cmplt out

NOTE: Each value of SAR_i/SAR_v

should be held for 128 clocks to give time
for the analog comparators to settle.

NOTE: smpl signal

asserted for 128
clocks after strt_cnv

Possible Testbench for A2D Digital

A2D Analog

gt_sin

gt_cos

SinSAR[11:0]

CosSAR[11:0]

smpl

A2D_Sequencer

a
n
a
_
s
in

[1
1
:0

]

a
n
a
_
c
o
s
[1

1
:0

]

A2D Digital

c
lk

rs
t_

n

s
tr

t_
c
n
v

c
n
v
_
c
m

p
lt

$
re

a
d
m

e
m

h
()

Make a sequencer that reads
a bunch of 24-bit values from
a file, and packs them in a
memory (use $readmemh()).

Apply the upper 12-bit to
ana_i, and the lower 12-bits
to ana_v.

The sequencer then hits it
with a strt_cnv, and waits for
a cnv_cmplt.

It then self checks the values
SAR_i and SAR_v vs ana_i,
and ana_v respectively.

If they match it moves on to
the next value specified in
A2D_vals.txt

26

EEPROM

 The EEPROM is an 4-entry 12-bit word

EEPROM. There is a on-chip charge

pump used to provide the programming

voltage from the nominal 1.8V supply.

Address: Description:

00 Offset term for SinSAR

01 Gain term for SinSAR

10 Offset term for CosSAR

11 Gain term for CosSAR

EEPROM Map

Signal Name: Direction Description:

clk / rst_n In Hook to main system clock & reset

eep_addr[1:0] in Address to EEPROM

wrt_data[11:0] in Data to be written to EEPROM

rd_data[11:0] out Data from EEPROM when read.

eep_cs_n in Active low chip select. Bus operation is for EEPROM

eep_r_w_n in Bus operation is write when 0, and read when 1

chrg_pmp_en in Enables Vpp charge pump (hold for at least 3ms)

EEPROM Signal Interface

27

EEPROM Timings (write)

clk

eep_addr[1:0]

wrt_data[11:0]

eep_r_w_n

eep_cs_n

chrg_pmp_en

Address to write to

Data to be written

…

…

…

…

…

…

…
XXX XXX

…

Hold chrg_pmp_en for 3ms

Address and data to be written only have to be held for 1 clock cycle.

chrg_pmp_en, however has to be maintained for 3ms during a write.

28

EEPROM Timings (read)

clk

eep_addr[1:0]

rd_data[11:0]

eep_r_w_n

eep_cs_n

Address to to read

Data XXX XXX

The EEPROM is single cycle read, but the data out will be
valid late in the cycle.

chrg_pmp_en should be low the entire time.
chrg_pmp_en is used to fire up the on chip charge pump
that provides the programming voltage. Therefore it is
only used during EEPROM writes.

29

Required Hierarchy & Interface
 Your Design will be placed in an “Eric” Testbench to validate its functionality.

Therefore, it must be pin for pin compatible with our testbench.

You Must have a block called car_dig.v which is top level of what will be the synthesized DUT.
The interface of car_dig.v must match exactly to our specified car_dig.v interface
Please copy car_dig.v (interface skeleton) from ~ece551/public.

The hierarchy of your testbench above car_dig.v is up to your team.

CAR = Calibratable Angle Resolver

EEPROM

VPP Chrg Pmp

CLK

RST_n

V_Sin

V_Cos

MOSI

MISO

SS_n

SCLK

Dual
12-bit
DAC

+

-

A2D Analog

+

-

12

12

Digital Core

A2D
Digital SPI Interface

gt_sin

SinSAR

car_dig.v

CosSAR

gt_cos

dst[11:0]
RDY

30

Recommended Testbench Hierarchy

A2D_sequencer analog_vals.txt

SPI
Master

clk_rst.v
(provided)

Below is the recommended hierarchy for the full chip testbench. You are not
required to do it this way, but if you do there is a template file available in
~ece551/public

A file called car_dig_tb.v can be copied from ~ece551/public. It is a template of a testbench
with this hierarchy.

car_dig_tb.v

Dual
12-bit
DAC

+

-

A2D Analog

+

-

12

12

Digital Core

A2D
Digital SPI Interface

gt_sin

SinSAR

car_dig.v

CosSAR

gt_cos

EEPROM

VPP Chrg Pmp

MOSI

MISO

SS_n

SCLK

dst[11:0]
RDY

31

Available Models & Hierarchy

 Interface &Model files available at:

• ~ejhoffman/ece551/public

 File Name: Description:

car_dig_tb.v Optional testbench template file. Note currently includes a tasks file

in my area. You should change this path.

car_dig.v Requried interface skeleton verilog file. Copy this and flush it out

with your design

A2D_analog.v Models DAC & comparator, outputs gt signal.

A2D_sequencer.v Sequencer that reads values from a file (analog_vals.txt) and applies

them as the “analog” stimulus to the FB input of A2D_analog.v. User

must modify file path to analog_vals.txt

eep.v Model of the 4x12bit EEPROM. Reads initial values from

eep_init.txt. User must modify file path!

eep_init.txt Example of file for EEPROM initial values.

analog_vals.txt A data set containing data records for testing.

