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Grading Criteria: (Project is 30% of final grade) 

 Project Grading Criteria: 
• Quantitative Element 25% 

(yes this could result in extra credit) 

 

• Project Demo (65%) 
Code Review (12.5%) 

Testbench Method/Completeness (15%) 

Synthesis Script review (10%) 

  Post-synthesis Test run results (12.5%) 

  Results when placed in Eric Testbench (15%) 

 

sizedAreaYourSynthe

ojectAreaEric
veQuantitati

Pr_


• Project Report 10%  
Expected to be around 5-8 pages (don’t go crazy, I don’t want to grade a really 

long report) 

  Show partitioning of digital core (block diagram, few words) 

  Report on datapath implementation (algorithm, support HW needed in datapath) 

  Report on each team members contributions 

  Section on lessons learned (focus on the hard leaned lessons…the heartache) 

Note: The design has to be functionally 
correct for this to apply 
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Project Due Date 

 Project Demos will be held in B555: 

• Date 12/12/12 from 1:00PM till evening. 

• Other Date 12/14/12 from 1:00PM till evening. 

 

 Project Demo Involves: 
Code Review 

 Testbench Method/Completeness 

Synthesis Script & Results review 

 Post-synthesis Test run results 

 Results when placed in Eric testbench 

 Hand in of short report 

 

 

 



Chip Block Diagram 
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Description: The CAR chip is a high speed, high precision angle resolver.   It has a 2-chanel 12-
bit A2D converter to sample a sine and cosine signal from an angle sensor.  The sine channel 
produces and output that is A*sin(a)+B, and the cosine channel produces a signal that is 
C*cos(a)+D.  The B and D terms represent undesired offsets that has to be cancelled through 
calibration.  A and C represent unknown scaling terms that also need normalization through 
calibration.  Calibration coefficients are stored in EEPROM.  After each channel is digitally corrected 
for offset and gain the angle a is calculated by the digital core, and available on the SPI interface. 

RDY 



Calibration…what needs to be performed 
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CorrectedSin = (SinSAR+OffsetSin)*ScaleSin 
CorrectedCos = (CosSAR+OffsetCos)*ScaleCos 

Raw Sin/Cos signals into A2D Need to correct for Gain & Offset errors 

Perform correction in 
digital domain using 
scaling and offset 
coefficients stored in 
EEPROM 

EEPROM 

Address: 

Coefficient: 

0 OffsetSin 

1 ScaleSin 

2 OffsetCos 

3 ScaleCos 



Calculating a 
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ArcTan

However this only gives an answer in the 
Range of –p/2 to p/2 
 
We have to correct for the other quadrants 
(when CorrectedCos(a) is negative) 

How do you compute ArcTan? 
 
Are you really going to implement a divide? 
 
Remember HW1.  Look at HW Solution. 



CAR in a System 
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SIN 

COS 

CLK 

RST 

CAR 

SS_n 

MISO 
SPI 

An angle resolver could be used in multiple different systems.  It could be part of a VFD drive system for 
an AC motor.  It could be part of a power steering angular sensor.  It could be part of a antenna sweep 
mechanism for an AWACs plane.  It could be part of some high speed industrial robotics. 
 
In most any system the output of our chip would be processed by an embedded micro-controller which 
would in turn control the process of interest.  For the project we will take the output to be a SPI bus.  It 
could however be any number of serial protocols. (I2C, UART, SENT, ModBus, …) 
 
Cosine based angular encoders are most commonly constructed from optical means or magnetic means. 
Light shining through slots on a disk to an optical sensor, or rotating magnetic field penetrating a hall 
effect sensor. 
 
In the project area of the website take a look at the TLE5012 spec from Infineon.  We are essentially 
making a slightly simplified version of this chip. (This spec is self contained…look only if interested) 

MOSI 

SCLK 

Cosine angular encoder 

RDY 
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What is synthesized DUT vs modeled? 

The blocks outlined in red above are pure digital blocks, and will be coded with the intent of 
being synthesized.  All other blocks will be modeled in Verilog for fullchip simulation purposes.  
 
For the class project Verilog models of (EEPROM, A2D Analog) will be provided.  
 
You Must have a block called car_dig.v which is top level of what will be the synthesized DUT. 
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Digital Core Block Diagram 

It is recommended 
to partition the digital 
core into 2 blocks.  A 
datapath block will 
perform the computation 
and data movement.  A 
control block 
(implemented as a FSM) 
will orchestrate all the 
data movement, and 
interface to the SPI bus, 
A2D, and EEPROM. 
 
Signal interface of the 
digital core will be 
specified in the following 
slides.  Signal interface 
between the datapath 
and the main state 
machine are left to the 
project team. 

saturate 

A2D 
Intf 

Working 
Registers 

Constants 

EEPROM SPI 

ALU 

P_reg 

Main SM 

Shift-25 

src1 src0 

dst 

Datapath 
Digital Core 

0’s 

R
D

Y
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Digital Core Interface 

Signal Name: Dir. Description: 

cmd_rdy In Signal from “modbus” interface is ready 

cmd_rcvd[15:0] In 16-bit data from “modbus” interface. 

wrt_SPI Out Signal to SPI interface asserted when digital core writes a new output to SPI. 

dst[11:0] Out Output data bus from core.  Used for writes to the EEPROM, wraps internally to 

working registers.  Lower 12-bits used for 16-bit writes to modbus interface 

eep_addr[1:0] Out Address to EEPROM 

eep_rd_data[11:0] In Data from the EEPROM (returned on a read) 

eep_cs_n Out Chip select (enable) to EEPROM block (active low) 

eep_r_w_n Out Read/write control to EEPROM (active low for write) 

chrg_pmp_en Out Signal enables on chip VPP charge pump (maintain for 3ms) 

strt_cnv Out Signal to A2D interface instructs it to start a conversion on both channels 

cnv_cmplt In Signal from A2D interface.  Indicates both channels are ready 

sinSAR In Angle sin value(result of A2D conversion)(to 12-bit DAC of A2D analog). 

cosSAR In Angle cos value (result of A2D conversion )(to 12-bit DAC of A2D analog). 

clk In Clock input to core (471.85MHz) 

rst_n In Reset signal (active low) 
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Reset Over 

No 

Wait Conv Cmplt 

CmdFromMstr? Issue strt_cnv 

inCmds? 

No 

Yes 

CorrSin = SinSAR+EEP(0) 
CorrSin = CorrSin*EEP(1) 

CorrCos = CosSAR+EEP(2) 
CorrCos = CorrSin*EEP(3) 

Issue strt_cnv 

Perform ArcTan math 
and write results to SPI 

register 
Assert RDY 

CmdMd Command? 

Wait 3ms 

Set inCmds 
flop, write 

posAck 
No 

Yes 

Decode, Execute, & 
Write command results 

to SPI register. 
Assert RDY 

Digital Core Main Flow 

yellow boxes are a macro 
functions shown in more 
detail in later slides. 

 



Decode & Execute Cmd 
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write EEPROM  

read EEPROM  

No 

Yes 

Yes 

No 

Read Corr Sin 

No 

Yes 
Back to Main 

Loop 

unlock EEPROM  Set unlock flop 
Write 0x0A5A 
to SPI register 

Yes 

Write if unlocked 
Assert CP for 3ms 

Write 0x0A5A 
to SPI register 

Read specified  
address 

Write data 
to SPI register 

Write CorrSin 
to SPI register 

Read Corr Cos 

Enter CM 

Write CorrSin 
to SPI register 

Write CorrSin 
to SPI register 

Yes 

Set inCmds flop 

No 

No 

No 

Set RDY signal 

Enter 
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Command Set 

Bits[15:14] Bits[13:12] Bits[11:0] Description: 

2’b01 2’b00 12’hxxx Read corrected Sin value 

2’b01 2’b01 12’hxxx Read corrected Cos value. 

2’b01 2’b10 12’hxxx Enter command mode.  This sets the inCmds flop 

2’b01 2’b11 12’hxxx Unlock EEPROM.  This upper nibble [15:12] must be 

sent prior to any EEPROM write.  It is used as an 

interlock to reduce probability of inadvertent writes. 

2’b10 2’bYY 12’hxxx Read EEPROM.  The 2-bits (2’bYY) specify which 

location of EEPROM to read.  Data is a don’t care. 

2’b11 2’bYY 12’hDATA Write EEPROM.  The location to write is specified by 

2’bYY.  The data to write is in the lower 12-bits. 

Command Encoding: All commands are 16-bits.  Bits[15:12] contain the command endoding.  
Bits[13:12] contain the address if the command is EEPROM related.  The lower 12-bits 
(Bits[11:0]) contain data in the case of EEPROM write, and are don’t care otherwise.   

1
5 

1
4 

1
3 

1
2 

1
1 

1
0 
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Math 
 The A2D values SinSAR and CosSAR are unsigned values that range from 0 to 

0xFFF.  They need to be made into signed numbers in the range from 0x800 to 

0x7FF.  This is done by simply inverting the MSB. 

 

 Offset correction is performed on the rawA2D readings.  EEPROM locations 0 and 

2 contain signed offsets for SinSAR and CosSAR respectively. 

 

 Next each of the offset corrected A2D readings have a gain term.  The offset 

corrected SinSAR & CosSAR reading are multiplied by an attenuation term stored 

in EEPROM locations 1 and 3 respectively. 

 

 Now it is time to compute the arctangent of (Sin/Cos) to derive a.  What is your 

method?  Have you considered CORDIC? 



CORDIC Algorithm 
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Cos(a) 

Sin(a) 

Lets take example of a=30 
Iter: Rotation  

Amount 

Resulting 

Angle 

Sum of 

Rotations 

1 -45 -15 -45 

2 +22.5 7.5 -22.5 

3 -11.25 -3.75 -33.75 

4 +5.625 1.875 -28.125 

5 -2.8125 -0.9375 -30.9375 

If one had a convenient way of rotating a vector by binary weighted amounts starting 
at 45°.   For instances ±45°,±22.5°,±11.25°,±5.625°, …  Then any vector in quadrants 
I or IV (vectors with cos(a) >0) could be rotated to zero (so resulting vector lies 
along the x-axis).  If one keeps track of the sum of all the rotations necessary to get 
the vector to zero then they know what the original angle a was. 
 
CORDIC is an algorithm that can do such vector rotations, and with very simple 
digital blocks required.  Adder, shifter, small lookup table, … 
 
 

a 



Implementing CORDIC (to 12-bit precision) 

Need a lookup table with 12 entries of 12-bit vectors 

16 

Indx: Value: Hex: 

0 Arctan(1) 0x200 

1 Arctan(1/2) 0x12E 

2 Arctan(1/4) 0x0A0 

3 Arctan(1/8) 0x051 

4 Arctan(1/16) 0x029 

5 Arctan(1/32) 0x014 

6 Arctan(1/64) 0x00A 

7 Arctan(1/128) 0x005 

8 Arctan(1/256) 0x003 

9 Arctan(1/512) 0x001 

10 Arctan(1/1024) 0x001 

11 Arctan(1/2048) 0x000 

Normally we think of angles in radians, and having a 

range of [-p,p).  However, real digital designers do 

not work with real numbers, they scale things to be 
integers.   
 
We will define our own results.  We will scale our 
number system to suite our needs.  If we are 
representing an angle in the range [-p,p)with a 12-bit 

number then –p  0x800, and +p = 0x7FF. 

 
Using that scaling the hex values for our lookup table 
are as shown in the table to the right. 
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Implementing CORDIC (to 12-bit precision) 

CORDIC works well when the initial vector is in 
quadrant I or IV, but what about when cos(a) is 
negative? 
 
Rotate the angle by p or -p by assigning cos(a) = -
cos(a) and sin(a) = -sin(a). 
 
If sin(a) was positive you will need to start your 

angle accumulator (used to sum all rotatons) at p. 
 
If sin(a) was negative you will need to start your 

angle accumulator (used to sum all rotatons) at -p. 
 

Rotate initial vector by +p, so we start 
CORDIC iterations with a vector in 
Quadrant IV 

Rotate initial vector by -p, so we start 
CORDIC iterations with a vector in 
Quadrant I 

if (cos(a)<0) { 

  if (sin(a)<0) {  // quad III case 

    angle_accum = 0x800; // negative p 

  } 

  else {   // quad II case 

    angle_accum = 0x7FF; // positive p 

  } 

  cos(a) = -cos(a); 

  sin(a) = -sin(a); 

} 

else {   // Quad I & IV case 

  angle_accum = 0;  // no initial rotation 

} 
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Implementing CORDIC (the iterations) 

for (iter=0; iter<12; iter++) { 

  if (sin(a)>0) {  // clockwise rotation needed 

    angle_accum = angle_accum + table(iter); 

    nxt_cos(a) = cos(a) + (sin(a)>>>iter); 

    nxt_sin(a) = sin(a) – (cos(a)>>>iter); 

} 

  else {   // counter-clockwise rotation 

    angle_accum = angle_accum - table(iter); 

    nxt_cos(a) = cos(a) - (sin(a)>>>iter); 

    nxt_sin(a) = sin(a) + (cos(a)>>>iter); 

  } 

} 

Of course loop is not done as a “for” loop in verilog.  It is done 
as a state machine that repeats its operations 12 times, and 
utilizes a 4-bit counter to know when it has done it 12 times. Do 
we have to iterate 12 times?  Look at the last entry in the table. 
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Normal Operation Loop 

 

 

Conv_cmplt? 

P_reg = SinSAR+EEP(0) 
 

Yes 

No 

P_reg = P_reg * EEP(1) 
CorrSin = MultRes 

inCmds? 

Compute ArcTan 

Write to SPI Register 
P_reg = CosSAR + EEP(2) 

(issue strt_conv here) 

P_reg = P_reg * EEP(3) 
CorrCos = MultRes 

Execute 
Cmd & 

Write SPI 

No 

Yes 



What is SPI? 
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 Simple full duplex serial interface (Motorola long long ago) 

• Serial Peripheral Interconnect (very popular physical interface) 

• 4-wires 

MOSI (Master Out Slave In) (CAR is a slave, your testbench will be a master) 

MISO (Master In Slave Out) (CAR will drive this) (but only when SS_n is low) 

SCLK (Serial Clock) 

SS_n (Active low Slave Select) (If it is low then CAR is being selected) 
 

• There are many different variants 

MISO changes on clock low vs clock high 

SCLK normally high vs normally low 

Widths of packets can vary from application to applications 

Really is a very loose standard (barely a standard at all) 
 

• We will stick to the most commonly used variant 

MISO changes on SCLK low 

SCLK normally low 

16-bit packets (both directions will be 16-bit packets) 

 



SPI Packets 
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… 
SCLK 

SS_n 

MOSI 

… 

… 

… 

MISO 
… 

… 

HiZ XX 

C15 C14 C13 CD0 CD1 CD2 XX 

HiZ D15 D14 D13 D0 D1 D2 

A SPI packet inherently involves a send and receive (full duplex).  The full duplex packet is always 
initiated by the master.  Master controls SCLK, SS_n, and MOSI.  The slave drives MISO if it is 
selected.  If the slave is not selected it should leave MISO high impedance. 
 

 
MOSI will change on the falling edge of SCLK with the understanding that the slave will flop it on 
the falling edge of SCLK. 
 
MISO will change on the falling edge of SCLK with the understanding that the master will flop it on 
the rising or falling edge of SCLK. 
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General Flow (coming out of reset) 

Out of reset the core will wait for 3ms for a SPI command to come in.  If a Enter 
Command Mode (EnterCM) command comes in then the core will enter a functional loop 
that is used for sensor calibration.  If no EnterCM command comes in then the core will 
enter its normal operation loop (as shown here).  In this loop it performs A2D 
measurements on the Sin & Cos inputs, corrects them for offset/gain errors, and 
computes the arctan to get the sensor angle a.  This value a is then written to the SPI 
output register.  The whole loop then repeats indefinitely. 

rst_n 

Core Activity Correction math 

Check if device is in 
CmdMode, if so is there a 

new command? 

Offset&Gain 
on SAR Sin/Cos 

issue  
strt_conv & 
wait for CC 

3ms wait for CM 

Issue strt_cnv as 
soon as done with 

raw A2D data 

Compute the 
angle a, and 
write to SPI 

register 

ArcTan Correction math ArcTan 

Normal op calcs continue if 
not in command mode 
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Flow When in Command Mode 

When in command mode the digital core still calculates offset and scaling correction on 
the sine and cosine channels.  It then checks for an incoming command from the SPI 
bus. If a command has come in it will decode and execute that command and write a 
response to the SPI output register.  The first command it sees in this example is an 
unlock EEPROM command.  It sets the unlock bit, writes a positive acknowledge 
(16’h0A5A) to the SPI bus. The core then returns for another round of sine/cosine 
measurement and correction.  When completed it sees the next command is a write to 
EEPROM (the output on MISO during this time is a posAck to the previous UnlckEEP 
command).  Since the unlock bit is set from the previous command it writes EEPROM, the 
core then writes a positive acknowledge to SPI and returns to the sine/cosine correction. 

Core Activity Sin & Cos Corr 

MOSI 
Activity 

UnlckEEP 

Check for Command  
from SPI 

Set unlock flop, 
write PosAck 

WrtEEP 

Sin & Cos Corr   

Check for Command  
from SPI 

Write EEP, 
write PosAck 

RdEEP 

MISO 
Activity 

PosAck PosAck PosAck 

Read EEP, 
write to SPI 

Sin & Cos Corr Sin & Cos Corr 

??? 

EEP_res 

Check for Command  
from SPI 



A2D Interface 
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• A2D_Analog verilog will be provided 
 

• You create A2D_Digital 
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SinSAR 

CosSAR 

signal direction 

gt_sin in 

gt_cos in 

strt_cnv in 

signal direction 

SinSAR[11:0] out 

CosSAR[11:0] out 

smpl out 

cnv_cmplt out 

NOTE: Each value of SAR_i/SAR_v 

should be held for 128 clocks to give time 
for the analog comparators to settle. 

NOTE: smpl signal 

asserted for 128 
clocks after strt_cnv 



Possible Testbench for A2D Digital 

A2D Analog 

gt_sin 

gt_cos 

SinSAR[11:0] 

CosSAR[11:0] 

smpl 

 
 
 
 
 
 
 
 
 
A2D_Sequencer 
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Make a sequencer that reads 
a bunch of 24-bit values from 
a file, and packs them in a 
memory (use $readmemh()). 
 
Apply the upper 12-bit to 
ana_i, and the lower 12-bits 
to ana_v.   
 
The sequencer then hits it 
with a strt_cnv, and waits for 
a cnv_cmplt.  
 
It then self checks the values 
SAR_i and SAR_v vs ana_i, 
and ana_v respectively. 
 
If they match it moves on to 
the next value specified in 
A2D_vals.txt 
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EEPROM 

 The EEPROM is an 4-entry 12-bit word 

EEPROM.  There is a on-chip charge 

pump used to provide the programming 

voltage from the nominal 1.8V supply. 

Address: Description: 

00 Offset term for SinSAR 

01 Gain term for SinSAR 

10 Offset term for CosSAR 

11 Gain term for CosSAR 

EEPROM Map 

Signal Name: Direction Description: 

clk / rst_n In Hook to main system clock & reset 

eep_addr[1:0] in Address to EEPROM 

wrt_data[11:0] in Data to be written to EEPROM 

rd_data[11:0] out Data from EEPROM when read. 

eep_cs_n in Active low chip select.  Bus operation is for EEPROM 

eep_r_w_n in Bus operation is write when 0, and read when 1 

chrg_pmp_en in Enables Vpp charge pump (hold for at least 3ms) 

EEPROM Signal Interface 
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EEPROM Timings (write) 

clk 

eep_addr[1:0] 

wrt_data[11:0] 

eep_r_w_n 

eep_cs_n 

chrg_pmp_en 

Address to write to 

Data to be written 

… 

… 

… 

… 

… 

… 

… 
XXX XXX 

… 

Hold chrg_pmp_en for 3ms 

Address and data to be written only have to be held for 1 clock cycle. 
 
chrg_pmp_en, however has to be maintained for 3ms during a write. 
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EEPROM Timings (read) 

clk 

eep_addr[1:0] 

rd_data[11:0] 

eep_r_w_n 

eep_cs_n 

Address to to read 

Data XXX XXX 

The EEPROM is single cycle read, but the data out will be 
valid late in the cycle. 
 
chrg_pmp_en should be low the entire time.  
chrg_pmp_en is used to fire up the on chip charge pump 
that provides the programming voltage.  Therefore it is 
only used during EEPROM writes. 
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Required Hierarchy & Interface 
 Your Design will be placed in an “Eric” Testbench to validate its functionality.  

Therefore, it must be pin for pin compatible with our testbench. 

You Must have a block called car_dig.v which is top level of what will be the synthesized DUT. 
The interface of car_dig.v must match exactly to our specified car_dig.v interface 
Please copy car_dig.v (interface skeleton) from ~ece551/public. 
 
The hierarchy of your testbench above car_dig.v is up to your team. 

CAR = Calibratable Angle Resolver 

EEPROM 

VPP Chrg Pmp 

CLK 

RST_n 

V_Sin 

V_Cos 

MOSI 

MISO 

SS_n 

SCLK 

Dual 
12-bit 
DAC 

+ 

- 

A2D Analog 

+ 

- 

12 

12 

Digital Core 

A2D 
Digital SPI Interface 

gt_sin 

SinSAR 

car_dig.v 

CosSAR 

gt_cos 

dst[11:0] 
RDY 
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Recommended Testbench Hierarchy 

A2D_sequencer analog_vals.txt 

SPI 
Master 

clk_rst.v 
(provided) 

Below is the recommended hierarchy for the full chip testbench.  You are not 
required to do it this way, but if you do there is a template file available in 
~ece551/public 

A file called car_dig_tb.v can be copied from ~ece551/public.  It is a template of a testbench 
with this hierarchy. 

car_dig_tb.v 

Dual 
12-bit 
DAC 

+ 

- 

A2D Analog 

+ 

- 

12 

12 

Digital Core 

A2D 
Digital SPI Interface 

gt_sin 

SinSAR 

car_dig.v 

CosSAR 

gt_cos 

EEPROM 

VPP Chrg Pmp 

MOSI 

MISO 

SS_n 

SCLK 

dst[11:0] 
RDY 
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Available Models & Hierarchy 

 Interface &Model files available at: 

• ~ejhoffman/ece551/public 

 File Name: Description: 

car_dig_tb.v Optional testbench template file.  Note currently includes a tasks file 

in my area.  You should change this path. 

car_dig.v Requried interface skeleton verilog file.  Copy this and flush it out 

with your design 

A2D_analog.v Models DAC & comparator, outputs gt signal.  

A2D_sequencer.v Sequencer that reads values from a file (analog_vals.txt) and applies 

them as the “analog” stimulus to the FB input of A2D_analog.v.  User 

must modify file path to analog_vals.txt 

eep.v Model of the 4x12bit EEPROM.  Reads initial values from 

eep_init.txt.  User must modify file path! 

eep_init.txt Example of file for EEPROM initial values. 

analog_vals.txt A data set containing data records for testing. 


